We present a dynamical model of a multi-site fishery. The fish stock is located on a discrete set of fish habitats where it is catched by the fishing fleet. We assume that fishes remain on fishing habitats while the fishing vessels can move at a fast time scale to visit the different fishing sites.
View Article and Find Full Text PDFWe study the effects of a disease affecting a predator on the dynamics of a predator-prey system. We couple an SIRS model applied to the predator population, to a Lotka-Volterra model. The SIRS model describes the spread of the disease in a predator population subdivided into susceptible, infected and removed individuals.
View Article and Find Full Text PDFWe generalize to n patches the Ross-Macdonald model which describes the dynamics of malaria. We incorporate in our model the fact that some patches can be vector free. We assume that the hosts can migrate between patches, but not the vectors.
View Article and Find Full Text PDFOne goal of this paper is to give an algorithm for computing a threshold condition for epidemiological systems arising from compartmental deterministic modeling. We calculate a threshold condition T(0) of the parameters of the system such that if T(0)<1 the disease-free equilibrium (DFE) is locally asymptotically stable (LAS), and if T(0)>1, the DFE is unstable. The second objective, by adding some reasonable assumptions, is to give, depending on the model, necessary and sufficient conditions for global asymptotic stability (GAS) of the DFE.
View Article and Find Full Text PDFWe compute the basic reproduction ratio of a SEIS model with n classes of latent individuals and bilinear incidence. The system exhibits the traditional behaviour. We prove that if R(0) < or = 1, then the disease-free equilibrium is globally asymptotically stable on the nonnegative orthant and if R (0) > 1, an endemic equilibrium exists and is globally asymptotically stable on the positive orthant.
View Article and Find Full Text PDFWe provide a global analysis of systems of within-host parasitic infections. The systems studied have parallel classes of different length of latently infected target cells. These systems can also be thought as systems arising from within-host parasitic systems with distributed continuous delays.
View Article and Find Full Text PDF