Publications by authors named "Gautheron D"

Schizosaccharomyces pombe yeast cells grown on either fermentable or respiratory media were efficiently converted to stable spheroplasts by the alpha-(1-->3)-glucanase Novozym 234 in the presence of 1.2 M sorbitol. Lysis of spheroplasts by gentle homogenization in dilute sorbitol resulted in the preparation of mitochondria with a structure similar to that observed within the starting yeast cells.

View Article and Find Full Text PDF

The segment R165-T330 of the alpha subunit of Schizosaccharomyces pombe F1-ATPase, corresponding to a putative nucleotide-binding domain by comparison with related nucleotide-binding proteins, has been overexpressed in Escherichia coli. Produced as a nonsoluble material, it was purified in a nonnative form, using a rapid procedure that includes one reversed-phase chromatography step. Refolding of the domain, called DN alpha 19, was achieved quantitatively by using a high-dilution step and monitored by circular dichroism and intrinsic fluorescence.

View Article and Find Full Text PDF

The intrinsic tryptophan fluorescence of Schizosaccharomyces pombe mitochondrial F1 is a very sensitive probe to differentiate nucleotide binding to catalytic and noncatalytic sites (Divita, G., Di Pietro, A., Roux, B.

View Article and Find Full Text PDF

Chemical modification of mitochondrial F1-ATPase from Schizosaccharomyces pombe by the tryptophan-specific reagent N-bromosuccinimide (NBS) at pH 5.0 in the presence of 20% glycerol produced a characteristic lowering in both enzyme absorbance at 280 nm and intrinsic fluorescence at 332 nm that varied with NBS/F1 molar ratio up to a value of 130. Fluorometric titration of tryptophans and correlation to residual ATPase activity showed that modification of three reactive residues among the seven present on alpha- and epsilon-subunits did not markedly modify the enzyme activity but efficiently released endogenous ATP and abolished the fluorescence quenching related to GDP or ATP binding to the catalytic site.

View Article and Find Full Text PDF

Mitochondrial F1 from the yeast Schizosaccharomyces pombe exhibits an intrinsic tryptophan fluorescence sensitive to adenine nucleotides and inorganic phosphate [Divita, G., Di Pietro, A., Deléage, G.

View Article and Find Full Text PDF

A large-scale purification procedure was developed to isolate the five subunits of F1-ATPase from pig heart mitochondria. The previously described procedure (Williams, N. and Pedersen, P.

View Article and Find Full Text PDF

CD spectra have been recorded with subunit delta from chloroplast CF0CF1 and with OSCP from mitochondrial MF0MF1. These subunits are supposed to act similarly at the interface between proton transport through the F0-portion and ATP-synthesis in the F1-portion of their respective F0F1-ATPase. Evaluation of the data for both proteins revealed a very high alpha-helix content of approximately 85% and practically no beta-sheets.

View Article and Find Full Text PDF

The first described alpha-subunit mutation of yeast mitochondrial F1 has been recently identified as a single Gln173----Leu substitution in a strongly conserved sequence (Falson, P., Maffey, L., Conrath, K.

View Article and Find Full Text PDF

Mitochondrial F1 from the yeast Schizosaccharomyces pombe, in contrast to the mammalian enzyme, exhibits a characteristic intrinsic tryptophan fluorescence with a maximal excitation at 291 nm and a maximal emission at 332 nm. Low values of Stern-Volmer quenching constants, 4.0 M-1 or 1.

View Article and Find Full Text PDF

A 13-residue peptide containing the first 12 amino acids of the N-terminal part of the signal sequence of yeast cytochrome c oxidase subunit IV is shown by chemical crosslinking to interact with a mitochondrial protein. This result is obtained with mitochondria from four different origins. Submitochondrial localization experiments suggest that the 28 kDa labelled component is present on the outer face of the inner membrane.

View Article and Find Full Text PDF

A delta epsilon complex has been purified as a molecular entity from pig heart mitochondrial F1-ATPase. This delta epsilon complex has also been reconstituted from purified delta and epsilon subunits. Both isolated and reconstituted delta epsilon complexes have delta 1 epsilon 1 stoichiometry and are indistinguishable by their chromatographic behavior, their circular dichroism spectra (CD spectra), and their intrinsic fluorescence features.

View Article and Find Full Text PDF

Phenotypic revertants have been selected from mutants of the yeast Schizosaccharomyces pombe devoid of either alpha or beta subunits of mitochondrial ATPase-ATPsynthase. In contrast to parental mutants, phenotypic revertants are able to grow on glycerol respiratory medium and show immunodetectable alpha and beta subunits. However, growth and cellular respiration are only partially restored as compared to the wild strain, indicating that the recovered subunits are mutated.

View Article and Find Full Text PDF

Mitochondrial F1 containing genetically modified beta-subunit was purified for the first time from a mutant of the yeast Schizosaccharomyces pombe. Precipitation by poly(ethylene glycol) allowed us to obtain a very stable and pure enzyme from either mutant or wild-type strain. In the presence of EDTA, purified F1 retained high amounts of endogenous nucleotides: 4.

View Article and Find Full Text PDF

A phenotypic revertant with modified beta-subunits of mitochondrial ATPase-ATP synthase has been obtained for the first time by selection from a beta-less mutant of the yeast Schizosaccharomyces pombe. Contrary to the parental mutant, the phenotypic revertant grows on glycerol, has normal respiratory activity and shows immunodetectable beta-subunits. However the kinetic properties of its submitochondrial particles ATPase activity differ markedly from those of the wild strain.

View Article and Find Full Text PDF

The protein ATPase inhibitor entraps about five nucleotides in pig heart mitochondrial F1, one at least being a triphosphate [Di Pietro, A., Penin, F., Julliard, J.

View Article and Find Full Text PDF

The improvement in mitochondrial functions which normally occurs in newborn rat liver in vivo during the few hours following delivery is inhibited by a glucose injection at birth (Meister, R., Comte, J., Baggetto, L.

View Article and Find Full Text PDF

To improve our understanding of the beneficial effects of alkylxanthines in various disorders, two animal models were used. The biochemical modifications due to pentoxifylline and HWA 285 on mitochondrial maturation and protein biosynthesis during the neonatal period were determined simultaneously.

View Article and Find Full Text PDF

A simple microcomputer package is described to make the theoretical analysis of protein sequences. Several methods designed to compare two sequences, to model proteolytic reactions and to predict the secondary structure, the hydrophobic/hydrophilic regions and the potential antigenic sites of proteins have been included in an Apple II microcomputer software. The package comprises 21 programs as well as the secondary structure database of Kabsch and Sander (1983).

View Article and Find Full Text PDF

Monoclonal and polyclonal antibodies directed against peptides of F1-ATPase of F1F0-ATPase synthase provide new and efficient tools to study structure-function relationships and mechanisms of such complex membrane enzymes. This review summarizes the main results obtained using this approach. Antibodies have permitted the determination of the nature of subunits involved in the complex, their stoichiometry, their organization, neighboring interactions, and vectorial distribution within or on either face of the membrane.

View Article and Find Full Text PDF

This paper demonstrates that the inhibition of F1 ATPase activity by the natural inhibitor protein IF1 is correlated to triphosphate nucleotide entrapment in F1. The complete balance of nucleotides bound after preincubation with Mg-[alpha-32P]GTP or Mg-[alpha-32P]ATP, used to promote IF1 inhibition, has been established on purified F1 containing 0.7 mol of non-exchangeable endogenous nucleotides.

View Article and Find Full Text PDF

A partial revertant from a mutant with modified alpha subunits of mitochondrial ATPase-ATPsynthase has been obtained for the first time from the yeast Schizosaccharomyces pombe. The purified F1 contains a lower amount of endogenous nucleotides as compared to the wild-strain enzyme. In contrast to the wild-type, the F1 ATPase activity from the revertant does not exhibit bicarbonate-sensitive negative cooperativity.

View Article and Find Full Text PDF

Pig heart mitochondrial membranes depleted of F1 and OSCP by various treatments were analyzed for their content in alpha and beta subunits of F1 and in OSCP using monoclonal antibodies. Membrane treatments and conditions of rebinding of F1 and OSCP were optimized to reconstitute efficient NADH- and ATP-dependent proton fluxes, ATP synthesis and oligomycin-sensitive ATPase activity. F1 and OSCP can be rebound independently to depleted membranes but to avoid unspecific binding of F1 to depleted membranes (ASUA) which is not efficient for ATP synthesis, F1 must be rebound before the addition of OSCP.

View Article and Find Full Text PDF

Preincubation of F1-ATPase with ADP and Mg2+ leads to ADP binding at regulatory site inducing a hysteretic inhibition of ATP hydrolysis, i.e., an inhibition that slowly develops after Mg-ATP addition (Di Pietro, A.

View Article and Find Full Text PDF

A glucose injection given immediately after birth delays the maturation which normally occurs in rat liver mitochondria and which increases the rate of ATP synthesis coupled to succinate oxidation from a low value at birth to the adult value a few hours after birth [R. Meister, J. Comte, L.

View Article and Find Full Text PDF