Publications by authors named "Gaute Lavik"

Lacustrine methane emissions are strongly mitigated by aerobic methane-oxidizing bacteria (MOB) that are typically most active at the oxic-anoxic interface. Although oxygen is required by the MOB for the first step of methane oxidation, their occurrence in anoxic lake waters has raised the possibility that they are capable of oxidizing methane further anaerobically. Here, we investigate the activity and growth of MOB in Lake Zug, a permanently stratified freshwater lake.

View Article and Find Full Text PDF
Article Synopsis
  • Methylphosphonate is utilized by microorganisms in marine waters when phosphate is scarce, leading to the unexpected production of methane, a potent greenhouse gas.
  • The study shows significant rates of methane production in the western tropical North Atlantic, even in phosphate-rich conditions, indicating that methylphosphonate can still contribute to methane levels.
  • Key microbial groups, including Pelagibacterales and SAR116, have the genetic capability to use methylphosphonate, suggesting its ecological role in carbon fixation and the marine carbon cycle.
View Article and Find Full Text PDF

Marine coastlines colonized by seagrasses are a net source of methane to the atmosphere. However, methane emissions from these environments are still poorly constrained, and the underlying processes and responsible microorganisms remain largely unknown. Here, we investigated methane turnover in seagrass meadows of in the Mediterranean Sea.

View Article and Find Full Text PDF

Oligotrophic ocean gyre ecosystems may be expanding due to rising global temperatures [1-5]. Models predicting carbon flow through these changing ecosystems require accurate descriptions of phytoplankton communities and their metabolic activities [6]. We therefore measured distributions and activities of cyanobacteria and small photosynthetic eukaryotes throughout the euphotic zone on a zonal transect through the South Pacific Ocean, focusing on the ultraoligotrophic waters of the South Pacific Gyre (SPG).

View Article and Find Full Text PDF

Nitrification rates are low in permeable intertidal sand flats such that the water column is the primary source of nitrate to the sediment. During tidal inundation, nitrate is supplied to the pore space by advection rather than diffusion, relieving the microorganisms that reside in the sand from nitrate limitation and supporting higher denitrification rates than those observed under diffusive transport. Sand flats are also home to an abundant community of benthic photosynthetic microorganisms, the microphytobenthos (MPB).

View Article and Find Full Text PDF

Anaerobic oxidation of ammonium (anammox) in oxygen minimum zones (OMZs) is a major pathway of oceanic nitrogen loss. Ammonium released from sinking particles has been suggested to fuel this process. During cruises to the Peruvian OMZ in April-June 2017 we found that anammox rates are strongly correlated with the volume of small particles (128-512 µm), even though anammox bacteria were not directly associated with particles.

View Article and Find Full Text PDF

Diatoms are among the few eukaryotes known to store nitrate (NO ) and to use it as an electron acceptor for respiration in the absence of light and O . Using microscopy and N stable isotope incubations, we studied the relationship between dissimilatory nitrate/nitrite reduction to ammonium (DNRA) and diel vertical migration of diatoms in phototrophic microbial mats and the underlying sediment of a sinkhole in Lake Huron (USA). We found that the diatoms rapidly accumulated NO at the mat-water interface in the afternoon and 40% of the population migrated deep into the sediment, where they were exposed to dark and anoxic conditions for ~75% of the day.

View Article and Find Full Text PDF

Cyanobacterial mats were hotspots of biogeochemical cycling during the Precambrian. However, mechanisms that controlled O release by these ecosystems are poorly understood. In an analog to Proterozoic coastal ecosystems, the Frasassi sulfidic springs mats, we studied the regulation of oxygenic and sulfide-driven anoxygenic photosynthesis (OP and AP) in versatile cyanobacteria, and interactions with sulfur reducing bacteria (SRB).

View Article and Find Full Text PDF

The pool of dissolved organic matter (DOM) in the deep ocean represents one of the largest carbon sinks on the planet. In recent years, studies have shown that most of this pool is recalcitrant, because individual compounds are present at low concentrations and because certain compounds seem resistant to microbial degradation. The formation of the diverse and recalcitrant deep ocean DOM pool has been attributed to repeated and successive processing of DOM by microorganisms over time scales of weeks to years.

View Article and Find Full Text PDF

The genomes of the Asgard superphylum of Archaea hold clues pertaining to the nature of the host cell that acquired the mitochondrion at the origin of eukaryotes. Representatives of the Asgard candidate phylum Candidatus Lokiarchaeota (Lokiarchaeon) have the capacity for acetogenesis and fermentation, but how their metabolic activity responds to environmental conditions is poorly understood. Here, we show that in anoxic Namibian shelf sediments, Lokiarchaeon gene expression levels are higher than those of bacterial phyla and increase with depth below the seafloor.

View Article and Find Full Text PDF

Global-scale N-oxide contamination of groundwater within aquifers occurs due to the widespread use of N-bearing fertilizers and chemicals, threatening both human and environmental health. However, the conversion of these pollutants in active nitrogen (N) cycling processes in the subsurface biosphere still remains unclear. This study investigates the global occurrence of anaerobic ammonium oxidation (anammox) in aquifers, where anammox was found to be turned on and off between saturated and unsaturated soil horizons, and contributed 36.

View Article and Find Full Text PDF
Article Synopsis
  • Members of the epsilonproteobacterial genus are significant sulfide oxidizers in marine environments, particularly in areas like the productive upwelling waters off the coast of Peru, where they comprise a notable percentage of the microbial community.
  • A newly isolated species showed the ability to oxidize sulfide and denitrify, but it cannot fix carbon dioxide through autotrophic means, relying instead on organic carbon such as acetate for growth.
  • This research sheds light on the metabolic versatility of this species and its potential ecological role in oxygen minimum zones, suggesting it could thrive in nutrient-rich and sulfide-laden waters.
View Article and Find Full Text PDF

Dissolved iron (DFe) concentrations in oxygen minimum zones (OMZs) of Eastern Boundary Upwelling Systems are enhanced as a result of high supply rates from anoxic sediments. However, pronounced variations in DFe concentrations in anoxic coastal waters of the Peruvian OMZ indicate that there are factors in addition to dissolved oxygen concentrations (O) that control Fe cycling. Our study demonstrates that sediment-derived reduced Fe (Fe(II)) forms the main DFe fraction in the anoxic/euxinic water column off Peru, which is responsible for DFe accumulations of up to 200 nmol L.

View Article and Find Full Text PDF
Article Synopsis
  • Coastal oceans are impacted by human-caused nitrogen inputs, which are often denitrified in sandy sediments before they reach the open ocean.
  • Sandy sediments facilitate this process through porewater transport, impacting organic matter and oxygen levels, but how denitrifying microorganisms adapt to these changes is not fully understood.
  • Research from the Wadden Sea shows that different microorganisms are responsible for denitrification, producing nitrous oxide (N2O) that is released into the atmosphere, which may have implications for other coastal environments as well.
View Article and Find Full Text PDF

Chain-forming diatoms are key CO-fixing organisms in the ocean. Under turbulent conditions they form fast-sinking aggregates that are exported from the upper sunlit ocean to the ocean interior. A decade-old paradigm states that primary production in chain-forming diatoms is stimulated by turbulence.

View Article and Find Full Text PDF

Filamentous large sulfur-oxidizing bacteria (FLSB) of the family are globally distributed aquatic bacteria that can control geochemical fluxes from the sediment to the water column through their metabolic activity. FLSB mats from hydrothermal sediments of Guaymas Basin, Mexico, typically have a "fried-egg" appearance, with orange filaments dominating near the center and wider white filaments at the periphery, likely reflecting areas of higher and lower sulfide fluxes, respectively. These FLSB store large quantities of intracellular nitrate that they use to oxidize sulfide.

View Article and Find Full Text PDF

Members of the gammaproteobacterial clade SUP05 couple water column sulfide oxidation to nitrate reduction in sulfidic oxygen minimum zones (OMZs). Their abundance in offshore OMZ waters devoid of detectable sulfide has led to the suggestion that local sulfate reduction fuels SUP05-mediated sulfide oxidation in a so-called "cryptic sulfur cycle". We examined the distribution and metabolic capacity of SUP05 in Peru Upwelling waters, using a combination of oceanographic, molecular, biogeochemical and single-cell techniques.

View Article and Find Full Text PDF

The fate of the enormous amount of reactive nitrogen released to the environment by human activities in India is unknown. Here we show occurrence of seasonal stratification and generally low concentrations of dissolved inorganic combined nitrogen, and high molecular nitrogen (N) to argon ratio, thus suggesting seasonal loss to N in anoxic hypolimnia of several dam-reservoirs. However, N-experiments yielded low rates of denitrification, anaerobic ammonium oxidation and dissimilatory nitrate reduction to ammonium-except in the presence of methane (CH) that caused ~12-fold increase in denitrification.

View Article and Find Full Text PDF

The N -fixing (diazotrophic) community in marine ecosystems is dominated by non-cyanobacterial microorganisms. Yet, very little is known about their identity, function and ecological relevance due to a lack of cultured representatives. Here we report a novel heterotrophic diazotroph isolated from the oxygen minimum zone (OMZ) off Peru.

View Article and Find Full Text PDF

Nitrogen (N) input to the coastal oceans has increased considerably because of anthropogenic activities, however, concurrent increases have not occurred in open oceans. It has been suggested that benthic denitrification in sandy coastal sediments is a sink for this N. Sandy sediments are dynamic permeable environments, where electron acceptor and donor concentrations fluctuate over short temporal and spatial scales.

View Article and Find Full Text PDF

The eastern tropical South Pacific (ETSP) upwelling region is one of the ocean's largest sinks of fixed nitrogen, which is lost as N2 via the anaerobic processes of anammox and denitrification. One-third of nitrogen loss occurs in productive shelf waters stimulated by organic matter export as a result of eastern boundary upwelling. Offshore, nitrogen loss rates are lower, but due to its sheer size this area accounts for ~70% of ETSP nitrogen loss.

View Article and Find Full Text PDF

Microbial dinitrogen (N) fixation, the nitrogenase enzyme-catalysed reduction of N gas into biologically available ammonia, is the main source of new nitrogen (N) in the ocean. For more than 50 years, oceanic N fixation has mainly been attributed to the activity of the colonial cyanobacterium Trichodesmium. Other smaller N-fixing microorganisms (diazotrophs)-in particular the unicellular cyanobacteria group A (UCYN-A)-are, however, abundant enough to potentially contribute significantly to N fixation in the surface waters of the oceans.

View Article and Find Full Text PDF

Microorganisms are the most abundant lifeform on Earth, mediating global fluxes of matter and energy. Over the past decade, high-throughput molecular techniques generating multiomic sequence information (DNA, mRNA, and protein) have transformed our perception of this microcosmos, conceptually linking microorganisms at the individual, population, and community levels to a wide range of ecosystem functions and services. Here, we develop a biogeochemical model that describes metabolic coupling along the redox gradient in Saanich Inlet-a seasonally anoxic fjord with biogeochemistry analogous to oxygen minimum zones (OMZs).

View Article and Find Full Text PDF

Most microorganisms live in environments where nutrients are limited and fluctuate over time. Cells respond to nutrient fluctuations by sensing and adapting their physiological state. Recent studies suggest phenotypic heterogeneity(1) in isogenic populations as an alternative strategy in fluctuating environments, where a subpopulation of cells express a function that allows growth under conditions that might arise in the future(2-9).

View Article and Find Full Text PDF