Background: Heat shock protein 90 (HSP90) is an important chaperone supporting the function of many proinflammatory client proteins. Recent studies indicate HSP90 inhibition may be a novel mechanism of action for inflammatory skin diseases; however, this has not been explored in atopic dermatitis (AD).
Objectives: Our study aimed to investigate HSP90 as a novel target to treat AD.
Importance: Hidradenitis suppurativa is a painful immune-mediated disorder with limited treatment options; hence, a need exists for new treatments.
Objective: To evaluate the feasibility of heat shock protein 90 inhibition by RGRN-305 as a novel mechanism of action in treating moderate to severe hidradenitis suppurativa.
Design, Setting, And Participants: This was a parallel-design, double-blind, proof-of-concept, placebo-controlled randomized clinical trial conducted between September 22, 2021, and August 29, 2022, at the Department of Dermatology, Aarhus University Hospital in Denmark.
Introduction: Chronic inflammatory skin diseases may have a profound negative impact on the quality of life. Current treatment options may be inadequate, offering an unsatisfactory response or side effects. Therefore, ongoing efforts exist to identify novel effective and safe treatments.
View Article and Find Full Text PDFA critical target in age-related macular degeneration (AMD) is the retinal pigment epithelium (RPE), which forms the outer blood-retina barrier (BRB). RPE-barrier dysfunction might result from the disruption of intercellular tight junctions (TJs). A Connexin43 (Cx43)-based peptide, aCT1, has been shown to prevent VEGF-induced loss of transepithelial resistance, choroidal neovascularization (CNV) and RPE-cell damage via the stabilization of TJs.
View Article and Find Full Text PDFCircumventing chemoresistance is crucial for effectively treating cancer including glioblastoma, a lethal brain cancer. The gap junction protein connexin 43 (Cx43) renders glioblastoma resistant to chemotherapy; however, targeting Cx43 is difficult because mechanisms underlying Cx43-mediated chemoresistance remain elusive. Here we report that Cx43, but not other connexins, is highly expressed in a subpopulation of glioblastoma and Cx43 mRNA levels strongly correlate with poor prognosis and chemoresistance in this population, making Cx43 the prime therapeutic target among all connexins.
View Article and Find Full Text PDFPhase II clinical trials have reported that acute treatment of surgical skin wounds with the therapeutic peptide alpha Connexin Carboxy-Terminus 1 (αCT1) improves cutaneous scar appearance by 47% 9-month postsurgery. While Cx43 and ZO-1 have been identified as molecular targets of αCT1, the mode-of-action of the peptide in scar mitigation at cellular and tissue levels remains to be further characterized. Scar histoarchitecture in αCT1 and vehicle-control treated skin wounds within the same patient were compared using biopsies from a Phase I clinical trial at 29-day postwounding.
View Article and Find Full Text PDFKeratinocytes are the key cellular target for IL-17A-mediated effects in psoriasis and HSP90 is important for IL-17A-mediated signalling. RGRN-305 is a novel HSP90 inhibitor reported to reduce psoriatic phenotypes in preclinical animal models. The aim of this study was to investigate the effect of RGRN-305 on a psoriasis-like inflammatory response in human keratinocytes in vitro.
View Article and Find Full Text PDFEffective therapeutic delivery of peptide and protein drugs is challenged by short in vivo half-lives due to rapid degradation. Sustained release formulations of αCT1, a 25 amino acid peptide drug, would afford lower dosing frequency in indications that require long term treatment, such as chronic wounds and cancers. In this study, rhodamine B (RhB) was used as a model drug to develop and optimize a double emulsion-solvent evaporation method of poly(lactic-co-glycolic acid) (PLGA) nanoparticle synthesis.
View Article and Find Full Text PDF-opioid agonists (KOAs) enhance cardiac performance, as well as reduce infarct size and prevent deleterious cardiac remodeling following myocardial infarction. Additionally, KOAs promote diuresis; however, there has been limited development of KOAs as a class due to the promotion of untoward central nervous system (CNS)-mediated side effects. Our laboratory has developed a peripherally-restricted, orally-active, KOA () for the treatment of pain and cardiovascular disease.
View Article and Find Full Text PDFThe most ubiquitous gap junction protein within the body, connexin 43 (Cx43), is a target of interest for modulating the dermal wound healing response. Observational studies found associations between Cx43 at the wound edge and poor healing response, and subsequent studies utilizing local knockdown of Cx43 found improvements in wound closure rate and final scar appearance. Further preclinical work conducted using Cx43-based peptide therapeutics, including alpha connexin carboxyl terminus 1 (αCT1), a peptide mimetic of the Cx43 carboxyl terminus, reported similar improvements in wound healing and scar formation.
View Article and Find Full Text PDFResistance of malignant glioma, including glioblastoma (GBM), to the chemotherapeutic temozolomide (TMZ) remains a key obstacle in treatment strategies. The gap junction protein connexin43 (Cx43) has complex roles in the establishment, progression, and persistence of malignant glioma. Recent findings demonstrate that connexins play an important role in the microenvironment of malignant glioma and that Cx43 is capable of conferring chemotherapeutic resistance to GBM cells.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
May 2017
Diabetic peripheral neuropathy (DPN) remains one of the most common and serious complications of diabetes. Currently, pharmacological agents are limited to treating the pain associated with DPN, and do not address the underlying pathological mechanisms driving nerve damage, thus leaving a significant unmet medical need. Interestingly, research conducted using exercise as a treatment for DPN has revealed interleukin-6 (IL-6) signaling to be associated with many positive benefits such as enhanced blood flow and lipid metabolism, decreased chronic inflammation, and peripheral nerve fiber regeneration.
View Article and Find Full Text PDFUnlabelled: A critical target tissue in age-related macular degeneration (AMD) is the retinal pigment epithelium (RPE), which forms the outer blood-retina barrier (BRB). RPE-barrier dysfunction might result from attenuation/disruption of intercellular tight junctions. Zonula occludens-1 (ZO-1) is a major structural protein of intercellular junctions.
View Article and Find Full Text PDFConnexins are a family of transmembrane proteins that are characterized by their capacity to form intercellular channels called gap junctions that directly link the cytoplasm of adjacent cells. The formation of gap junctions by connexin proteins facilitates intercellular communication between neighboring cells by allowing for the transfer of ions and small signaling molecules. Communication through gap junctions is key to cellular equilibrium, where connexins, and the gap junction intercellular communication that connexins propagate, have roles in cellular processes such as cell growth, differentiation, and tissue homeostasis.
View Article and Find Full Text PDFMetastatic disease is the spread of malignant tumor cells from the primary cancer site to a distant organ and is the primary cause of cancer associated death. Common sites of metastatic spread include lung, lymph node, brain, and bone. Mechanisms that drive metastasis are intense areas of cancer research.
View Article and Find Full Text PDFBackground: Treatment failure is a critical issue in breast cancer and identifying useful interventions that optimize current cancer therapies remains a critical unmet need. Expression and functional studies have identified connexins (Cxs), a family of gap junction proteins, as potential tumor suppressors. Studies suggest that Cx43 has a role in breast cancer cell proliferation, differentiation, and migration.
View Article and Find Full Text PDFNonhealing neuropathic foot ulcers remain a significant problem in individuals with diabetes. The gap-junctional protein connexin43 (Cx43) has roles in dermal wound healing and targeting Cx43 signalling accelerates wound reepithelialization. In a prospective, randomized, multicenter clinical trial we evaluated the efficacy and safety of a peptide mimetic of the C-terminus of Cx43, alpha connexin carboxy-terminal (ACT1), in accelerating the healing of chronic diabetic foot ulcers (DFUs) when incorporated into standard of care (SOC) protocols.
View Article and Find Full Text PDFThe gap junction protein, connexin43 (Cx43), has critical roles in the inflammatory, edematous, and fibrotic processes following dermal injury and during wound healing, and is abnormally upregulated at the epidermal wound margins of venous leg ulcers (VLUs). Targeting Cx43 with ACT1, a peptide mimetic of the carboxyl-terminus of Cx43, accelerates fibroblast migration and proliferation, and wound reepithelialization. In a prospective, multicenter clinical trial conducted in India, adults with chronic VLUs were randomized to treatment with an ACT1 gel formulation plus conventional standard-of-care (SOC) protocols, involving maintaining wound moisture and four-layer compression bandage therapy, or SOC protocols alone.
View Article and Find Full Text PDFGap junctions and their connexin components are indispensable in mediating the cellular coordination required for tissue and organ homeostasis. The critical nature of their existence mandates a connection to disease while at the same time offering therapeutic potential. Therapeutic intervention may be offered through the pharmacological and molecular disruption of the pathways involved in connexin biosynthesis, gap junction assembly, stabilization, or degradation.
View Article and Find Full Text PDFSignificance: Evidence is building that the gap junction protein connexin43 (Cx43) is an important molecule in regenerative healing of skin and heart. Excess scarring from skin wound healing is a continuing clinical problem. Humans generally lack the ability to regenerate tissue following injury, and some degree of fibrotic repair occurs.
View Article and Find Full Text PDFThe alpha-carboxy terminus 1 (αCT1) peptide is a synthetically produced mimetic modified from the DDLEI C-terminus sequence of connexin 43 (Cx43). Previous research using various wound healing models have found promising therapeutic effects when applying the drug, resulting in increased wound healing rates and reduced scarring. Previous data suggested a rapid metabolism rate in vitro, creating an interest in long term release.
View Article and Find Full Text PDFThis chapter will outline strategies and ideas for the commercialization a promising wound healing technology discovered in an academic setting. This would include, but not limited to addressing topics such as intellectual property protection, funding, technology development, and regulatory aspects (i.e.
View Article and Find Full Text PDFThe ability to safely and quickly close wounds and lacerations is an area of need in regenerative medicine, with implications toward healing a wide range of tissues and wounds. Using an in vivo corneal injury model, our study applied a newly developed peptide capable of promotion of wound healing and epithelial regeneration. The alpha-carboxy terminus 1 (αCT1) peptide is a 25 amino acid peptide from the C-terminus of connexin 43 (Cx43), modified to promote cellular uptake.
View Article and Find Full Text PDF