Purpose: The aim of the present study was to evaluate the collective role of N-epsilon-carboxy methyl lysine (N(ε)-CML), advanced glycation end-products (AGEs), and reactive oxygen species (ROS) for the development of retinopathy among type 2 diabetic subjects.
Methods: Seventy type 2 diabetic subjects with nonproliferative diabetic retinopathy (NPDR), 105 subjects with proliferative diabetic retinopathy (PDR), and 102 patients with diabetes but without retinopathy (DNR) were enrolled in this study. In addition, 95 normal individuals without diabetes were enrolled as healthy controls in this study.
Purpose: Chronic hyperglycemia and hypoxemia are believed to be causal factors in the development of proliferative diabetic retinopathy (PDR) among individuals with type 2 diabetes. It is hypothesized that formation of new blood vessels in the retina due to prolonged hypoxia is associated with increased expression of several growth factors and angiogenic cytokines. In the present study, we investigated the association of genetic polymorphisms in vascular endothelial growth factor (VEGF), transforming growth factor beta (TGF-β), and interferon γ (IFN-γ) genes, which may be responsible for the hypoxia-induced VEGF-mediated neovascularization pathway for the pathogenesis of PDR.
View Article and Find Full Text PDFPurpose: To evaluate erythrocyte redox state and its surrogates in patients with different stages of diabetic retinopathy and their association with cellular metabolic derangement developed in retinal microvascular cells.
Methods: Sixty type 2 diabetic patients with nonproliferative diabetic retinopathy (NPDR), 85 patients with proliferative diabetic retinopathy (PDR), and 70 patients with diabetes but without retinopathy were considered as diabetic control (DC) for the study. In addition, 65 normal individuals without diabetes were enrolled as healthy control in this study.