Publications by authors named "Gautam Adhikary"

Transglutaminase 2 (TG2) is a multifunctional enzyme primarily responsible for crosslinking proteins. Ubiquitously expressed in humans, TG2 can act either as a transamidase by crosslinking two substrates through formation of an N(ɣ-glutaminyl)lysine bond or as an intracellular G-protein. These discrete roles are tightly regulated by both allosteric and environmental stimuli and are associated with dramatic changes in the conformation of the enzyme.

View Article and Find Full Text PDF

Unlabelled: Transglutaminase 2 (TG2) is a key cancer cell survival protein in many cancer types. As such, efforts are underway to characterize the mechanism of TG2 action. In this study, we report that TG2 stimulates CD44v6 activity to enhance cancer cell survival via a mechanism that involves formation of a TG2/CD44v6/ERK1/2 complex that activates ERK1/2 signaling to drive an aggressive cancer phenotype.

View Article and Find Full Text PDF

Cutaneous squamous cell carcinoma (CSCC), which develops in response to ultraviolet irradiation exposure, is among the most common cancers. CSCC lesions can be removed by surgical excision, but 4.5% of these cancers reappear as aggressive and therapy-resistant tumors.

View Article and Find Full Text PDF

Transglutaminase 2 (TG2), also referred to as tissue transglutaminase, plays crucial roles in both protein crosslinking and cell signalling. It is capable of both catalysing transamidation and acting as a G-protein, these activities being conformation-dependent, mutually exclusive, and tightly regulated. The dysregulation of both activities has been implicated in numerous pathologies.

View Article and Find Full Text PDF

Glutamine addiction is an important phenotype displayed in some types of cancer. In these cells, glutamine depletion results in a marked reduction in the aggressive cancer phenotype. Mesothelioma is an extremely aggressive disease that lacks effective therapy.

View Article and Find Full Text PDF

Sulforaphane (SFN) is a promising cancer prevention and treatment agent that strongly suppresses the cutaneous squamous cell carcinoma (CSCC) cell cancer phenotype. We previously showed that yes-associated protein 1 (YAP1)/TEAD signaling is a key procancer stimulator of the aggressive CSCC cell cancer phenotype. However, SFN-responsive upstream regulators of YAP1/TEAD signaling are not well characterized and so there is a pressing need to identify these factors.

View Article and Find Full Text PDF

Transglutaminase 2 (TG2) is an important cancer stem-like cell survival protein that is highly expressed in epidermal squamous cell carcinoma and drives an aggressive cancer phenotype. In the present study, we show that TG2 knockdown or inactivation results in a reduction in mammalian target of rapamycin (mTOR) level and activity in epidermal cancer stem-like cells which are associated with reduced spheroid formation, invasion, and migration, and reduced cancer stem cell and epithelial-mesenchymal transition (EMT) marker expression. Similar changes were observed in both cultured cells and tumors.

View Article and Find Full Text PDF

Transglutaminase 2 (TG2) is an important mesothelioma cancer cell survival protein. However, the mechanism whereby TG2 maintains mesothelioma cell survival is not well understood. We present studies showing that TG2 drives hepatocyte growth factor (HGF)-dependent MET receptor signaling to maintain the aggressive mesothelioma cancer phenotype.

View Article and Find Full Text PDF

Tissue transglutaminase (TG2) is a multifunctional protein that catalyses protein crosslinking in the extracellular matrix, and functions as an intracellular G-protein. While both activities have been associated with human diseases, its role as a G-protein has been linked to cancer stem cell survival and maintenance of a metastatic phenotype. Recently we have shown that targeted covalent inhibitors (TCIs) can react selectively with the enzyme active site of TG2, to allosterically abolish its ability to bind GTP.

View Article and Find Full Text PDF

Mesothelioma is a poor prognosis cancer of the mesothelial lining that develops in response to exposure to various agents including asbestos. Actin-Like Protein 6A (ACTL6A, BAF53a) is a SWI/SNF regulatory complex protein that is elevated in cancer cells and has been implicated as a driver of cancer cell survival and tumor formation. In the present study, we show that ACTL6A drives mesothelioma cancer cell proliferation, spheroid formation, invasion, and migration, and that these activities are markedly attenuated by ACTL6A knockdown.

View Article and Find Full Text PDF

Type 2 transglutaminase (TG2) functions as an important cancer cell survival protein in a range of cancers including epidermal squamous cell carcinoma. TG2 exists in open and closed conformations each of which has a distinct and mutually exclusive activity. The closed conformation has GTP-binding/GTPase activity while the open conformation functions as a transamidase to catalyze protein-protein crosslinking.

View Article and Find Full Text PDF

Transglutaminase 2 (TG2) is a key epidermal squamous cell carcinoma cancer cell survival protein. However, how TG2 maintains the aggressive cancer phenotype is not well understood. The present studies show that TG2, which is highly expressed in epidermal cancer stem-like cells (ECS cells), maintains hepatocyte growth factor (HGF) signaling to drive an aggressive ECS cell cancer phenotype.

View Article and Find Full Text PDF

Hepatocyte growth factor-overexpressing mice that harbor a deletion of the Ink4a/p16 locus (HP mice) form melanomas with low metastatic potential in response to UV irradiation. Here we report that these tumors become highly metastatic following hemizygous deletion of the Nme1 and Nme2 metastasis suppressor genes (HPN mice). Whole-genome sequencing of melanomas from HPN mice revealed a striking increase in lung metastatic activity that is associated with missense mutations in eight signature genes (Arhgap35, Atp8b4, Brca1, Ift172, Kif21b, Nckap5, Pcdha2, and Zfp869).

View Article and Find Full Text PDF

Epidermal squamous cell carcinoma (SCC) develops in response to ultraviolet light exposure and is among the most common cancers. The transglutaminase 2 cancer cell survival protein stimulates the activity of the YAP1/TEAD transcription complex to drive the expression of genes that promote aggressive epidermal SCC cell invasion, migration, and tumor formation. Therefore, we are interested in mechanisms that may inhibit these events.

View Article and Find Full Text PDF

Mesothelioma is a highly aggressive cancer of the mesothelial lining that is caused by exposure to asbestos. Surgical resection followed by chemotherapy is the current treatment strategy, but this is marginally successful and leads to drug-resistant disease. We are interested in factors that maintain the aggressive mesothelioma cancer phenotype as therapy targets.

View Article and Find Full Text PDF

Epidermal squamous cell carcinoma (SCC) is a common and highly invasive form of cancer. SCC arises due to ultraviolet light exposure and is associated with increased expression of pro-cancer genes and reduced expression of cancer suppressors. Actin-Like Protein 6A (ACTL6A, BAF53a) is an important protein subunit of the SWI/SNF epigenetic chromatin regulatory complex.

View Article and Find Full Text PDF

Mesothelioma is an aggressive cancer that has a poor prognosis. Tumors develop in the mesothelial lining of the pleural and peritoneal cavities in response to asbestos exposure. Surgical debulking followed by chemotherapy is initially effective, but this treatment ultimately selects for resistant cells that form aggressive and therapy-resistant recurrent tumors.

View Article and Find Full Text PDF

Epidermal cancer stem cells (ECS cells) comprise a limited population of cells that form aggressive, rapidly growing, and highly vascularized tumors. VEGF-A/NRP-1 signaling is a key driver of the ECS cell phenotype and aggressive tumor formation. However, relatively less is known regarding the downstream events following VEGF-A/NRP-1 interaction.

View Article and Find Full Text PDF

Mesothelioma is a rare cancer of the mesothelial cell layer of the pleura, peritoneum, pericardium and tunica vaginalis. It is typically caused by asbestos, notoriously resistant to chemotherapy and generally considered incurable with a poor life expectancy. Transglutaminase 2 (TG2), a GTP binding regulatory protein, is an important cancer stem cell survival and therapy resistance factor.

View Article and Find Full Text PDF

Melanoma patients respond poorly to chemotherapies because they acquire drug resistance. Therapies that can overcome the resistance to inhibitors of the mutated BRAF protein kinase in melanoma are urgently needed. Chk1 protein kinase is a central component of the DNA damage response and plays a crucial role in controlling cell cycle progression.

View Article and Find Full Text PDF

We have identified an epidermal cancer stem (ECS) cell population that drives formation of rapidly growing and highly invasive and vascularized tumors. VEGF-A and neuropilin-1 (NRP-1) are highly expressed in ECS cell tumors and VEGF-A/NRP-1 interaction is required for ECS cell survival and tumor vascularization. We now identify a novel signaling cascade that is triggered by VEGF-A/NRP-1.

View Article and Find Full Text PDF

Treating BRAF inhibitor-resistant melanoma is an important therapeutic goal. Thus, it is important to identify and target mechanisms of resistance to improve therapy. The YAP1 and TAZ proteins of the Hippo signaling pathway are important drivers of cancer cell survival, and are BRAF inhibitor resistant factors in melanoma.

View Article and Find Full Text PDF

Epidermal squamous cell carcinoma (SCC) is among the most common cancers. SCC can be treated by surgical excision, but recurrence of therapy-resistant disease is a major problem. We recently showed that YAP1, the Hippo signaling transcription adaptor protein, and ∆Np63α, a key epidermal stem cell survival protein, form a complex to drive epidermal cancer stem cell survival.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionv5u51rqa9fu78nj7el1j1m1eka16eput): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once