Publications by authors named "Gauri S Shetye"

The fruits of Amomun tsao-ko (Chinese black cardamom; Zingiberaceae) contain an abundance of essential oils, which have previously demonstrated significant antimicrobial activity. In our preliminary search for natural anti-tuberculosis agents, an acetone extract of A. tsao-ko (AAE) exhibited strong antibacterial activity against Mycobacterium tuberculosis H37Rv.

View Article and Find Full Text PDF

The ability of Mycobacterium tuberculosis (Mtb) to persist in its host may enable an evolutionary advantage for drug resistant variants to emerge. A potential strategy to prevent persistence and gain drug efficacy is to directly target the activity of enzymes that are crucial for persistence. We present a method for expedited discovery and structure-based design of lead compounds by targeting the hypoxia-associated enzyme L-alanine dehydrogenase (AlaDH).

View Article and Find Full Text PDF

Anti-infective drug discovery is greatly facilitated by the availability of assays that are more proficient at predicting the preclinical success of screening hits. Tuberculosis (TB) drug discovery is hindered by the relatively slow growth rate of Mycobacterium tuberculosis and the use of whole-cell-based assays that are inherently time-consuming, and for these reasons, rapid, noninvasive bioluminescence-based assays have been widely used in anti-TB drug discovery and development. In this study, assays that employ autoluminescent M.

View Article and Find Full Text PDF

The current tuberculosis (TB) predicament poses numerous challenges and therefore every incremental scientific work and all positive socio-political engagements, are steps taken in the right direction to eradicate TB. Progression of the late stage TB-drug pipeline into the clinics is an immediate deliverable of this global effort. At the same time, fueling basic research and pursuing early discovery work must be sustained to maintain a healthy TB-drug pipeline.

View Article and Find Full Text PDF

Rhamnolipids secreted by Pseudomonas aeruginosa are required for the bacteria to form biofilm efficiently and form biofilm with internal structures including pores and channels. In this work, we explore the effect of a class of synthetic analogs of rhamnolipids at controlling (promoting and inhibiting) the biofilm formation activities of a non-rhamnolipid-producing strain - rhlA - of P. aeruginosa.

View Article and Find Full Text PDF

Microbes secrete molecules that modify their environment. Here, we demonstrate a class of synthetic disaccharide derivatives (DSDs) that mimics and dominates the activity of naturally secreted rhamnolipids by Pseudomonas aeruginosa. The DSDs exhibit the dual function of activating and inhibiting the swarming motility through a concentration-dependent activity reversal that is characteristic of signaling molecules.

View Article and Find Full Text PDF

We have demonstrated that specific synthetic maltose derivatives activate the swarming motility of a Pseudomonas aeruginosa nonswarming mutant (rhlA) at low concentration, but inhibit it at high concentration. Although these molecules are not microbicidal, active maltose derivatives with bulky hydrocarbon groups inhibited bacterial adhesion, and exhibited biofilm inhibition and dispersion (IC50 ~20 μM and DC50 ~30 μM, respectively). Because the swarming motility of the rhlA mutant is abolished by the lack natural rhamnolipids, the swarming activation suggests that maltose derivatives are analogues of rhamnolipids.

View Article and Find Full Text PDF

Both natural and synthetic brominated furanones are known to inhibit biofilm formation by bacteria, but their toxicity to mammalian cells is often not reported. Here, we designed and synthesized a new class of brominated furanones (BBFs) that contained a bicyclic structure having one bromide group with well-defined regiochemistry. This class of molecules exhibited reduction in the toxicity to mammalian cells (human neuroblastoma SK-N-SH) and did not inhibit bacteria (Pseudomonas aeruginosa and Escherichia coli) growth, but retained the inhibitory activity towards biofilm formation of bacteria.

View Article and Find Full Text PDF

The physical properties of many organic molecules often oscillate when the number of carbons in their aliphatic chains changes from odd to even. This odd-even effect for single-chain surfactants in solution is rarely observed. Here, we report the ability of single-chain surfactants to emulsify a class of non-amphiphilic organic salts, disodium cromoglycate (5'DSCG) oscillates as a function of the odd or even number of the aliphatic carbons.

View Article and Find Full Text PDF

Single-chain surfactants usually emulsify and stabilize oily substances into droplets in an aqueous solution. Here, we report a coassembly system, in which single types of anionic or non-ionic surfactants emulsify a class of water-soluble nonamphiphilic organic salts with fused aromatic rings in aqueous solutions. The nonamphiphilic organic salts are in turn promoted to form droplets of water-based liquid crystals (chromonic liquid crystals) encapsulated by single-chain surfactants.

View Article and Find Full Text PDF

Crystallization of proteins is important for fundamental studies and biopharmaceutical development but remains largely an empirical science. Here, we report the use of organic salts that can form a class of unusual nonamphiphilic lyotropic liquid crystals to crystallize the protein lysozyme. Certain nonamphiphilic organic molecules with fused aromatic rings and two charges can assemble into stable thread-like noncovalent polymers that may further form liquid crystal phases in water, traditionally termed chromonic liquid crystals.

View Article and Find Full Text PDF