Publications by authors named "Gauri D Bajju"

The treatment of a dichloromethane solution of 5, 10, 15, 20-tetrakis-4-chlorophenyl porphyrin, , with methanolic solutions of each of phenol, -amino phenol, and -nitro phenol for just 1 h results in the formation of water-molecule-bound amorphous solids of . In addition to the straightforward access to the HO-molecule-coordinated species of thus produced, the another chief advantage of this synthetic strategy is the successful recoveries of anisole, -amino anisole, and -nitro anisole at the end of the reactions. The present work therefore further reports the use of as an efficient catalyst for the selective -methylation of phenols using methanol as an environmentally friendly methylating agent.

View Article and Find Full Text PDF

Herein, we report the synthesis of metal complexes of vanadium with heterocyclic tetradentate ligand. Four N atoms of the heterocyclic porphyrin ring occupy the equatorial position and O atom of salicylic acid occupies the axial position in the complex. The thermal and chemical stability of the complexes were assessed by thermogravimetric analysis (TGA).

View Article and Find Full Text PDF

A series of 5,10,15,20-tetraphenylporphinatozirconium(IV) acetylacetonatophenolates containing different phenols as axial ligands [Zr(TPP)(Y)(X)] (TPP = 5,10.15,20-tetraphenyl-21H, 23H-porphine; Y = acac; X = different phenolates) have been synthesized and characterized by various spectrochemical studies. The complexes were also screened for antimicrobial activities.

View Article and Find Full Text PDF

The synthesis and spectroscopic characterization of new axially ligated indium(III) porphyrin complexes were reported. Chloroindium(III) porphyrin (TPPIn-Cl) was obtained in good yield by treating the corresponding free base with indium trichloride. The action of the different phenols on chloroderivatives (TPPIn-Cl) led to the corresponding phenolato complexes (TPPIn-X).

View Article and Find Full Text PDF

Results of investigation of the physicochemical properties of zinc complexes containing substituted phenols as axial ligand having general formula [X-Zn-t(p-CH3) PP] [where X = different phenolates as axial ligand] in impurity-free organic solvent are presented. The four-coordinated zinc porphyrin accepts one axial ligand in 1 : 1 molar ratio to form five-coordinated complex, which is purified by column chromatography and characterized by physicochemical, biological evaluation and TGA/DTA studies. Absorption spectra show two principal effects: a red shift for phenols bearing substituted electron releasing groups (-CH3, -NH2) and blue shift for phenols bearing electron withdrawing groups (-NO2, -Cl) relative to Zn-t(p-CH3) PP, respectively.

View Article and Find Full Text PDF

A series of parasubstituted tetraphenylporphyrin zirconium(IV) salicylate complexes (SA/5-SSAZr(IV)RTPP, R = p-H, p-CH3, p-NO2, p-Cl, SA = salicylate, and 5-SSA = 5-sulfosalicylate) have been synthesized, and the spectral properties of free base porphyrins, their corresponding metallated, and axially ligated zirconium(IV) porphyrin compounds were compared with each other. A detailed analysis of ultraviolet-visible (UV-vis), proton nulcear magnetic resonance ((1)H NMR) spectroscopy, infrared (IR) spectroscopy, and elemental analysis suggested the transformation from free base porphyrins to zirconium(IV) porphyrins. The ability of the metal in this complex for extra coordination of solvent molecules was confirmed by ESI-MS spectra.

View Article and Find Full Text PDF