With increasing interest in nickel-based electrocatalysts, three heteroleptic Ni(II) dithiolate complexes with the general formula [Ni(II)L(L')] (1-3), L = 2-(methylene-1,1'-dithiolato)-5,5'-dimethylcyclohexane-1,3-dione and L' = triphenylphosphine (1), 1,1'-bis(diphenylphosphino)ferrocene (DPPF) (2), and 1,2-bis(diphenylphosphino)ethane (DPPE) (3), have been synthesized and characterized by various spectroscopic techniques (UV-vis, IR, H, and P{H} NMR) as well as the electrochemical method. The molecular structure of complex 2 has also been determined by single-crystal X-ray crystallography. The crystal structure of complex 2 reveals a distorted square planar geometry around the nickel metal ion with a NiPS core.
View Article and Find Full Text PDFA semi-microscopic theory is developed for heterogeneous electron transfer (HET) kinetics based on the energy level alignment approach at self-assembled monolayer (SAM) covered metal electrodes. Theory provides the electronic and molecular property-dependent equations for the HET rate constant () and the transfer coefficient (α) for potential. is formulated using the activation free energy as a product of the SAM covered metal work function (WF) and fractional electronic charge exchanged at the transition state (attained through the alignment of the frontier molecular orbital (FMO) energy level of the electroactive group with the WF of metal).
View Article and Find Full Text PDFWe develop a novel theory for the nanomorphology dependent outer sphere heterogeneous electron transfer (ET) rate constant () based on an energy level alignment approach. is modelled through the activation free energy, which is a product of the water monolayer covered metal work function (WF) and the fractional electronic charge exchanged at the transition state (attained through the alignment of the metal Fermi and HOMO/LUMO energy levels of the electroactive species). The theory shows that is an exponentially increasing and decreasing function of the mean curvature in concave and convex nanomorphologies, respectively, for electroactive species or proteins involving their HOMO energy.
View Article and Find Full Text PDF