Publications by authors named "Gaurav Gyawali"

A model for carboxylic acids, in both the protonated and deprotonated states, is developed in which hydrogen interaction sites are not used and all interactions are short-ranged. A method for constant pH simulations, which exploits these features of the model, is developed. The constant pH method samples protonation states by making discrete Monte Carlo steps and is able to efficiently move between states in two steps.

View Article and Find Full Text PDF

Thermoresponsive polymers can change structure or solubility as a function of temperature. Block co-polymers of polyethers have a response that depends on polymer molecular weight and co-polymer composition. A coarse-grained model for aqueous polyethers is developed and applied to polyethylene oxide and polyethylene oxide-polypropylene oxide-polyethylene oxide triblock co-polymers.

View Article and Find Full Text PDF

A model for linear alkanes is presented in which interaction sites are only on the carbon atoms, and the range of the potential is reduced using the Stillinger-Weber potential. The model is optimized for aqueous and liquid alkane properties and can match thermodynamic and structural properties, including solvation free energies, liquid densities, and liquid/vapor and liquid/water surface tensions for alkanes over a range of lengths. The results for long alkanes indicate that such models can be useful as accurate, yet efficient, coarse-grained potentials for macromolecules in water and other environments.

View Article and Find Full Text PDF

Channelrhodopsins (ChR1 and ChR2) are light-activated ion channels that enable photomobility of microalgae from the genus Chlamydomonas. Despite common use of ChR2 in optogenetics for selective control and monitoring of individual neurons in living tissue, the protein structures remain unresolved. Instead, a crystal structure of the ChR chimera (C1C2), an engineered combination of helices I-V from ChR1, without its C-terminus, and helices VI-VII from ChR2, is used as a template for ChR2 structure prediction.

View Article and Find Full Text PDF