Background: Antipsychotics may modulate the resting state functional connectivity(rsFC) to improve clinical symptoms in schizophrenia(Sz). Existing literature has potential confounders like past medication effects and evaluating preselected regions/networks. We aimed to evaluate connectivity pattern changes with antipsychotics in unmedicated Sz using Multivariate pattern analysis(MVPA), a data-driven technique for whole-brain connectome analysis.
View Article and Find Full Text PDFIntroduction: Brain-derived neurotrophic factor (BDNF) is involved in neuroplasticity underlying cognitive deficits, including working memory deficits (WMD), in schizophrenia. Methodological challenges and inconsistencies are reported with peripheral BDNF levels. Left dorsolateral prefrontal cortex (DLPFC) is proposed to underlie WMD, though inconsistently.
View Article and Find Full Text PDFObjective: T helper 17 (Th17) pathway has been reported to be abnormal in schizophrenia; however, it is not known whether variation within genes of this pathway has any impact on schizophrenia. Herein, the impact of genetic variations and gene-gene interactions of Th17 pathway-related genes on the risk, psychopathology, and brain volume was examined in schizophrenia patients.
Methods: Functional polymorphisms within interleukin 6 ( IL6 )(rs1800795 and rs1800797), IL10 (rs1800872 and rs1800896), IL17A (rs2275913 and rs8193036), IL22 (rs2227484 and rs2227485), IL23R (rs1884444), and IL27 (rs153109 and rs181206) genes were studied in 224 schizophrenia patients and 226 healthy controls.
Objectives: Electric field modeling utilizes structural brain magnetic resonance images (MRI) to model the electric field induced by non-invasive transcranial direct current stimulation (tDCS) in a given individual. Electric field modeling is being integrated with clinical outcomes to improve understanding of inter-individual variability in tDCS effects and to optimize tDCS parameters, thereby enhancing the predictability of clinical effects. The successful integration of modeling in clinical use will primarily be driven by choice of tools and procedures implemented in computational modeling.
View Article and Find Full Text PDFObjective: The Accelerator program for Discovery in Brain disorders using Stem cells (ADBS) is a longitudinal study on five cohorts of patients with major psychiatric disorders from genetically high-risk families, their unaffected first-degree relatives, and healthy subjects. We describe the ADBS protocols for acquisition, quality assurance (QA), and quality check (QC) for multimodal magnetic resonance brain imaging studies.
Methods: We describe the acquisition and QC protocols for structural, functional, and diffusion images.
Objective: Spatial normalization of brain MR images is highly dependent on the choice of target brain template. Morphological differences caused by factors like genetic and environmental exposures, generates a necessity to construct population specific brain templates. Brain image analysis performed using brain templates from Caucasian population may not be appropriate for non-Caucasian population.
View Article and Find Full Text PDF