Oxalate oxidase is a manganese containing enzyme that catalyzes the oxidation of oxalate to carbon dioxide in a reaction that is coupled with the reduction of oxygen to hydrogen peroxide. Oxalate oxidase from Ceriporiopsis subvermispora (CsOxOx) is the first fungal and bicupin enzyme identified that catalyzes this reaction. Potential applications of oxalate oxidase for use in pancreatic cancer treatment, to prevent scaling in paper pulping, and in biofuel cells have highlighted the need to understand the extent of the hydrogen peroxide inhibition of the CsOxOx catalyzed oxidation of oxalate.
View Article and Find Full Text PDFTherapeutic drugs that block DNA repair, including poly(ADP-ribose) polymerase (PARP) inhibitors, fail due to lack of tumor-selectivity. When PARP inhibitors and β-lapachone are combined, synergistic antitumor activity results from sustained NAD(P)H levels that refuel NQO1-dependent futile redox drug recycling. Significant oxygen-consumption-rate/reactive oxygen species cause dramatic DNA lesion increases that are not repaired due to PARP inhibition.
View Article and Find Full Text PDFUnlabelled: Ionizing radiation (IR) is a key therapeutic regimen for many head and neck cancers (HNC). However, the 5-year overall survival rate for locally advanced HNCs is approximately 50% and better therapeutic efficacy is needed.
Nad(p)h: quinone oxidoreductase 1 (NQO1) is overexpressed in many cancers, and β-lapachone (β-lap), a unique NQO1 bioactivatable drug, exploits this enzyme to release massive reactive oxygen species (ROS) that synergize with IR to kill by programmed necrosis.
It is beneficial to develop systems that reproduce complex reactions of biological systems while maintaining control over specific factors involved in such processes. We demonstrated a DNA device for following the repair of DNA damage produced by a redox-cycling anticancer drug, beta-lapachone (β-lap). These chips supported ß-lap-induced biological redox cycle and tracked subsequent DNA damage repair activity with redox-modified DNA monolayers on gold.
View Article and Find Full Text PDFUnlabelled: Base excision repair (BER) is an essential pathway for pancreatic ductal adenocarcinoma (PDA) survival. Attempts to target this repair pathway have failed due to lack of tumor-selectivity and very limited efficacy. The
Nad(p)h: Quinone Oxidoreductase 1 (NQO1) bioactivatable drug, ß-lapachone (ARQ761 in clinical form), can provide tumor-selective and enhanced synergy with BER inhibition.
Unlabelled: The fundamental role that NAD(P)H/quinone oxidoreductase 1 (NQO1) plays, in normal cells, as a cytoprotective enzyme guarding against stress induced by reactive oxygen species (ROS) is well documented. However, what is not known is whether the observed overexpression of NQO1 in neoplastic cells contributes to their survival. The current study discovered that depleting NQO1 expression in A549 and H292 lung adenocarcinoma cells caused an increase in ROS formation, inhibited anchorage-independent growth, increased anoikis sensitization, and decreased three-dimensional tumor spheroid invasion.
View Article and Find Full Text PDFBackground: Pancreatic ductal adenocarcinomas (PDA) activate a glutamine-dependent pathway of cytosolic nicotinamide adenine dinucleotide phosphate (NADPH) production to maintain redox homeostasis and support proliferation. Enzymes involved in this pathway (GLS1 (mitochondrial glutaminase 1), GOT1 (cytoplasmic glutamate oxaloacetate transaminase 1), and GOT2 (mitochondrial glutamate oxaloacetate transaminase 2)) are highly upregulated in PDA, and among these, inhibitors of GLS1 were recently deployed in clinical trials to target anabolic glutamine metabolism. However, single-agent inhibition of this pathway is cytostatic and unlikely to provide durable benefit in controlling advanced disease.
View Article and Find Full Text PDFBackground: Advanced non-small cell lung cancer (NSCLC) is an aggressive tumor that is treated with a combination of chemotherapy and radiation if the patient is not a candidate for surgery. Predictive biomarkers for response to radiotherapy are lacking in this patient population, making it a non-tailored therapy regimen with unknown outcome. Twenty to 30 % of NSCLC harbor an activating mutation in KRAS that may confer radioresistance.
View Article and Find Full Text PDFNicotinamide adenine dinucleotide phosphate (NADPH) biogenesis is an essential mechanism by which both normal and cancer cells maintain redox balance. While antitumor approaches to treat cancers through elevated reactive oxygen species (ROS) are not new ideas, depleting specific NADPH-biogenesis pathways that control recovery and repair pathways are novel, viable approaches to enhance cancer therapy. However, to elicit efficacious therapies exploiting NADPH-biogenic pathways, it is crucial to understand and specifically define the roles of NADPH-biogenesis pathways used by cancer cells for survival or recovery from cell stress.
View Article and Find Full Text PDFAims: β-Lapachone (β-lap), a novel radiosensitizer with potent antitumor efficacy alone, selectively kills solid cancers that over-express
Nad(p)h: quinone oxidoreductase 1 (NQO1). Since breast or other solid cancers have heterogeneous NQO1 expression, therapies that reduce the resistance (e.g.
Background: To determine whether patients found to have hematuria by their primary care physicians are evaluated according to best practice policy.
Materials And Methods: The University of Texas Southwestern Medical Center maintains institutional outpatient electronic medical records (EMR) that are used by all providers in all specialties. We conducted an Institutional Review Board approved observational study of patients found to have more than 5 red blood cells/high power field between March 2009 and February 2010.