COT (Tpl2 in mice) is a serine/threonine MAP3 kinase that regulates production of TNF-alpha and other pro-inflammatory cytokines such as IL-1beta via the ERK/MAP kinase pathway. As TNF-alpha and IL-1beta are clinically validated targets for therapeutic intervention in rheumatoid arthritis (RA), blocking COT provides a potential avenue for amelioration of disease. Herein we describe identification of a cellular active selective small molecule inhibitor of COT kinase.
View Article and Find Full Text PDFTwo-dimensional gel electrophoresis of in vitro phosphorylated proteins coprecipitated by CD2 monoclonal antibody (mAb) from Brij58 lysates of resting human T lymphocytes and natural killer (NK) cells resulted in the identification of a novel 29/30-kD disulfide-linked dimer (pp29/30). Comparative two-dimensional analysis of CD2, CD3, CD4, CD5, and CD8 immunoprecipitates revealed that pp29/30 associates with these signaling receptor complexes but not with CD18, CD27, and CD29 in human T lymphocytes. Analysis of CD2 immunoprecipitates prepared from T cell antigen receptor/CD3-modulated T lymphocytes indicated that pp29/30 preferentially associates and comodulates with the human T cell antigen receptor (TCR).
View Article and Find Full Text PDFThe synthesis of 5,10-methylene-5-deazatetrahydrofolic acid (2), a stable, rigid analogue of 5,10-methylenetetrahydrofolate (1), is reported as a potential inhibitor of thymidylate synthase. The target compound was obtained by a Fisher-indole type cyclization of the hydrazone 16 from 2-amino-6-hydrazino-4-oxopyrimidine (10) and diethyl N-[4-(3-formyl-1-pyrrolyl)benzoyl]-L-glutamate (15) followed by catalytic reduction of the product 17. Similarly, modification of the Fisher-indole type cyclization of the appropriate hydrazone precursors 11 and 12 afforded the nonclassical analogues 3-amino-7,8,9-trimethyl-2H-pyrrolo[3',4':4,5]pyrido[2,3-d]pyrimidin-1- one (4) and 3-amino-8-benzyl-7,9-dimethyl-2H-pyrrolo[3',4':4,5]pyrido [2,3-d]pyrimidin-1-one (5), respectively.
View Article and Find Full Text PDFTrimetrexate (TMTX), 5,10-dideazatetrahydrofolate (DDATHF), and 10-propargyl-5,8-dideazafolate (PDDF, CB3717) are antifolates whose primary intracellular targets are dihydrofolate reductase, glycinamide ribonucleotide formyltransferase, and thymidylate synthase, respectively. Varying the medium folic acid (PteGlu) concentration over the range of 0.5 to 100 microM increasingly blocks the growth inhibitory effects of the individual antifolates in Manca human lymphoma cells, but increasingly enhances the synergistic interaction of both TMTX + DDATHF and TMTX+ PDDF combinations.
View Article and Find Full Text PDFStructural modifications at the pyrimidine ring and at the C9,N10-bridge region of the thymidylate synthase (TS) inhibitors N10-propargyl-5,8-dideazafolate (1; PDDF; CB 3717), 2-desamino-N10-propargyl-5,8-dideazafolate (2, DPDDF), and 2-desamino-2-methyl-N10-propargyl-5,8-dideazafolate (3, DMPDDF) have been carried out. Methods for the synthesis of 2-desamino-N10-propargyl-1,5,8-trideazafolate (4), 2-desamino-2-methyl-N10-propargyl-3,5,8-trideazafolate (5a), and 2-desamino-2-methyl-N10-propargyl-5,8-dideaza-1,2-dihydrofolate (6) have been developed. The bridge-extended analogues isohomo-PDDF (7) and isohomo-DMPDDF (8) contain an additional methylene group interposed between N10 and the phenyl ring of 1 and 3, respectively.
View Article and Find Full Text PDFThe synthesis of 5,11-methylene-5-deazatetrahydrohomofolate (5), a stable, semirigid mimic of 5,10-methylenetetrahydrofolate (4) is reported as a potential inhibitor of thymidylate synthases (TS). The key intermediate 3-amino-1-oxo-tetrahydropyrimido[4,5-c] [2,6]naphthyridine (6) was obtained by the regiospecific cyclocondensation of 2,4,6-triaminopyrimidine with ethyl 1-benzyl-3-oxo-4-piperidinecarboxylate followed by halogenation (of the resulting lactam 9) and catalytic hydrogenolysis. Selective reduction of 6 followed by arylation with tert-butyl p-fluorobenzoate, saponification, and coupling with diethyl L-glutamate followed by saponification afforded the target compound 5.
View Article and Find Full Text PDFFive analogues of methotrextate (MTX), 10-deazaaminopterin (10-DAM), and 10-ethyl-10-deazaaminopterin (10-EDAM) in which the glutamate moiety was replaced by either a gamma-methyleneglutamate or beta-hydroxyglutamate were synthesized and evaluated for their antifolate activity. These analogous are 4-amino-4-deoxy-N10-methylpteroyl-beta-hydroxyglutamic acid (1), 4-amino-4-deoxy-10-deazapteroyl-beta-hydroxyglutamic acid (2), 4-amino-4-deoxy-N10-methylpteroyl-gamma-methyleneglutamic acid (3, MMTX), 4-amino-4-deoxy-10-deazapteroyl-gamma-methyleneglutamic acid (4, MDAM), and 4-amino-4-deoxy-10-ethyl-10-deazapteroyl-gamma-methyleneglutamic acid (5, MEDAM). None of these compounds were metabolized to the respective polyglutamate derivative as judged by their inability to serve as substrates for CCRF-CEM human leukemia cell folylpolyglutamate synthetase (FPGS) in vitro.
View Article and Find Full Text PDFIn order to determine the mechanism for the effects of homofolates on growth of Lactobacillus casei, polyglutamated derivatives of homofolate (HPteGlu), dihydrohomofolate and tetrahydrohomofolate (H4HPteGlu) were synthesized and tested as inhibitors of folate-requiring enzymes. The following L. casei enzymes were examined: thymidylate synthase (TS), glycinamide ribonucleotide formyltransferase (GARFT), aminoimidazolecarboxamide ribonucleotide formyltransferase, serine hydroxymethyltransferase and dihydrofolate reductase.
View Article and Find Full Text PDFSynthesis of the 10-methyl and 10-ethyl analogues of 5,10-dideazatetrahydrofolic acid (DDTHF), a potent inhibitor of glycinamide ribotide (GAR) formyltransferase, is reported. Key intermediates in the process were 10-methyl- and 10-ethyl-4-amino-4-deoxy-5,10-dideazapteroic acid. Condensation of the piperidine enamines of branched 4-(p-carbomethoxyphenyl)butyraldehydes with (acetoxymethylene)malononitrile afforded 1,1-dicyano-4-piperidinobutadiene 5a,b.
View Article and Find Full Text PDFRepresentative examples of folate and antifolate poly-gamma-glutamyl metabolites were synthesized via the [(9-fluorenylmethoxy)oxy]carbonyl (Fmoc) chemistry using the KH polyamide resin. Polyglutamate yields were consistently better in all cases compared to the previous Merrifield method, and the crude products were obtained in greater than 85% purity. The symmetrical anhydride (7) derived from alpha-tert-butyl N-Fmoc-L-glutamate (6) was used for the initial coupling of the first glutamate residue to the KH resin and also for subsequent chain elongation.
View Article and Find Full Text PDFReformatski condensation of benzyl 2-bromopropionate with 4-carbomethoxybenzaldehyde, followed by dehydration afforded benzyl 2-methyl-p-carbomethoxycinnamate (4a). Hydrogenation over a Pd catalyst gave the hydrocinnamic acid 5a. Conversion to the chloromethyl (6a) and azidomethyl ketone (7a) was followed by hydrogenation to the aminomethyl ketone (8a).
View Article and Find Full Text PDFThe chemical synthesis of three close analogues (2-4) of N10-propargyl-5,8-dideazafolate (PDDF) is described. The quinazoline ring of 2 and 4 was constructed from the pivotal intermediate 9 in a novel and unambiguous manner during the final step of the synthesis under very mild conditions. 2-Desamino-2-methyl-N10-propargyl-5,8-dideazafolate (DMPDDF) (2) was a strong inhibitor of human and Lactobacillus casei thymidylate synthases, whereas 2-desamino-2-(trifluoromethyl)-N10-propargyl-5,8-didezafolate (3) and 2-desamino-2,3-dimethyl-N10-propargyl-5,8-dideazafolate (4) were only weak inhibitors of this enzyme.
View Article and Find Full Text PDFThe Boon-Leigh procedure, involving condensation of a 6-chloro-5-nitropyrimidine (22) with an alpha-amino ketone (20 or 21) followed by reduction of the nitro group, cyclization, and L-glutamylation, led to the formation of 11-deazahomofolate (29) and its 10-methyl derivative (30). The corresponding (6R,S)-5,6,7,8-tetrahydro (4, 5) and 7,8-dihydro (31, 32) derivatives were prepared by catalytic hydrogenation. (6S)-11-Deazatetrahydrohomofolate was prepared from 29 by enzymatic reduction.
View Article and Find Full Text PDFIn order to determine the biochemical basis for the cytotoxicity of homofolates, poly-gamma-glutamyl derivatives of homofolate (HPteGlu) and tetrahydrohomofolate (H4HPteGlu) were synthesized and tested as inhibitors of glycinamide ribonucleotide formyltransferase (GARFT), aminoimidazolecarboxamide ribonucleotide formyltransferase (AICARFT), thymidylate synthase, and serine hydroxymethyltransferase (SHMT) in extracts of Manca human lymphoma and L1210 murine leukemia cells. The most striking inhibitions are that of GARFT by (6R,S)-H4HPteGlu4-6 with IC50 values from 1.3 to 0.
View Article and Find Full Text PDFThe title compounds were prepared in extensions of a general synthetic approach used earlier to prepare 5-alkyl-5-deaza analogues of classical antifolates. Wittig condensation of 2,4-diaminopyrido[2,3-d]pyrimidine-6-carboxaldehyde (2a) and its 5-methyl analogue 2b with [4-(methoxycarbonyl)benzylidene] triphenylphosphorane gave 9,10-ethenyl precursors 3a and 3b. Hydrogenation (DMF, ambient, 5% Pd/C) of the 9,10-ethenyl group of 3b followed by ester hydrolysis led to 4-[2-(2,4-diamino-5-methylpyrido[2,3-d]pyrimidin-6-yl)ethyl]ben zoi c acid (5), which was converted to 5-methyl-5,10-dideazaaminopterin (6) via coupling with dimethyl L-glutamate (mixed-anhydride method using i-BuOCOCl) followed by ester hydrolysis.
View Article and Find Full Text PDFThe syntheses of 8-deazahomofolic acid and its tetrahydro derivative, potential inhibitors of thymidylate synthase (TS) and other folate related enzymes, are described. Wittig condensation of 2-acetamido-6-formyl-4-pyrimidinol with the triphenylphosphine ylide 3 derived from N-acetyl-4-(p-carbethoxyanilino)-1-chloro-2-butanone, hydrogenation of the enone intermediate 5, introduction of a 5-amino group via diazonium coupling, and reductive ring closure yielded ethyl N11-acetyl-8-deazahomopteroate (8). Alkaline hydrolysis gave 8-deazahomopteroic acid, which was blocked as the 11-trifluoroacetyl derivative, coupled with diethyl L-glutamate, and the blocking groups saponified to afford 8-deazahomofolic acid (12).
View Article and Find Full Text PDFThe chemical synthesis of a series of poly-gamma-glutamyl metabolites of the experimental anticancer drugs 10-deazaaminopterin (10-DAAM) and 10-ethyl-10-deazaaminopterin (10-EDAAM) has been carried out by the solid-phase procedure. The synthetic products were identical with the poly-gamma-glutamyl metabolites of radiolabeled 10-DAAM and 10-EDAAM produced by normal mouse tissues with regard to elution volume from [(diethylamino)ethyl]cellulose columns and susceptibility to hydrolysis by human plasma folylpolyglutamate hydrolase. Poly-gamma-glutamyl metabolites with a glutamate chain length of up to four glutamate residues were detected in the tissues.
View Article and Find Full Text PDFThe 5,6,7,8-tetrahydro derivative (1) of the powerful thymidylate synthase inhibitor N10-propargyl-5,8-dideazafolic acid (PDDF) has been synthesized and evaluated for its antifolate activity. A convenient method for the preparation of the key intermediate 2-amino-6-(bromomethyl)-4-hydroxy-5,6,7,8-tetrahydroquinazoline (18) is described. Two closely related analogues of 1 were also synthesized and evaluated for their antifolate activity and thymidylate synthase inhibition.
View Article and Find Full Text PDFComparison of the kinetic parameters for influx of highly purified [3H]folic acid versus [3H]methotrexate in L1210 cells under anionic buffer conditions showed a marked discordancy. In addition, the kinetics for influx of [3H]folic acid were unchanged in variant L1210 cells defective in [3H]methotrexate transport. In these variant cells, the Vmax for methotrexate was reduced 17-fold and the Km was increased 3-fold.
View Article and Find Full Text PDFPolyglutamyl derivatives of methotrexate (MTX) and 10-deazaaminopterin (10-DAM) containing a total of one through six glutamate residues (Glu residues) were tested as inhibitors of dihydrofolate reductase (DHFR) derived from sheep, chicken, and beef liver. The ability of dihydropteroylpentaglutamate to antagonize the inhibitory activity of these analogues was also studied. The most striking effects were seen with sheep liver DHFR, where polyglutamylation of MTX causes stepwise decreases in the concentration required for 50% inhibition (IC50) with each additional Glu residue until MTX with a total of six Glu residues has an IC50 value 1/3 that of MTX.
View Article and Find Full Text PDFThe synthesis of the 5,10-methylene analogue of 5,6,7,8-tetrahydro-8,10-dideazaminopterin, a potential dual inhibitor of dihydrofolate reductase (DHFR) and thymidylate synthase (TS) enzymes, is described. The dimethyl ester of 10-carboxy-4-amino-4-deoxy-8,10-dideazapteroic acid was converted to the tetrahydro derivative by hydrogenation. Thermally induced cyclization of the 10-carbomethoxy and the 5-NH groups afforded the 5,10-carbonyl analogue.
View Article and Find Full Text PDFThe poly-gamma-glutamyl derivatives of n10-propargyl-5,8-dideazafolic acid (PDDF) with a chain length of up to five glutamate residues were synthesized from N10-propargyl-5,8-dideazapteroic acid by the solid-phase procedure. These compounds were evaluated for their antifolate activity using folate-requiring microorganisms and intact and permeabilized L1210 cells and as inhibitors of dihydrofolate reductase and thymidylate synthase derived from L. casei.
View Article and Find Full Text PDFN10-Propargylfolic acid (2), which is the closest pteridine analogue of the thymidylate synthase inhibitor N10-propargyl-5,8-dideazafolic acid (PDDF), was synthesized starting from diethyl [p-(N-propargylamino)benzoyl]-L-glutamate (5) and N-(3-bromo-2-oxopropyl)phthalimide (8). The 7,8-dihydro derivative of propargylfolic acid served as a synthetic substrate of Lactobacillus casei dihydrofolate reductase. Propargylfolic acid and its reduced derivatives were weak inhibitors of L.
View Article and Find Full Text PDFSynthesis and evaluation of the antitumor drugs 10-methyl- and 10-ethyl-10-deazaminopterin (15a,b) were previously reported for the diastereomeric mixtures, lacking resolution at the C-10 position. In order to assess biological properties of the individual diastereomers, the C-10 isomers of 4-amino-4-deoxy-10-methyl- and 10-ethyl-10-deazapteroic acids (13a,b) were prepared by total synthesis. Coupling with L-glutamate afforded the appropriate diastereomers of the title compounds.
View Article and Find Full Text PDF