Numerical models are currently used to understand how environmental fluctuations impact acoustic propagation. Such a process can be tedious in complex fluctuating environments. This letter proposes a complementary approach based upon canonical correlation analysis (CCA) to determine statistical relationships between two sets of observed acoustic and oceanographic variables.
View Article and Find Full Text PDFThe Acoustic Laboratory for Marine Applications (ALMA) is a deployable and autonomous acoustic system, designed by DGA Naval Systems, to address problems in underwater acoustics, such as sound propagation in fluctuating environments. In this article, data from the ALMA-2016 at-sea campaign are used to analyze the ocean fluctuation's influence on sound propagation in a shallow-water waveguide. The experiment took place on the continental shelf of the island of Corsica in November 2016.
View Article and Find Full Text PDFThis paper deals with the loss of coherence in underwater direction-of-arrival estimation. The coherence loss, which typically arises from dynamical ocean fluctuations and unknown environmental parameters, may take the form of a multiplicative colored random noise applied to the measured acoustic signal. This specific multiplicative noise needs to be addressed with methodological developments.
View Article and Find Full Text PDF