Recrystallization is considered the main damaging mechanism during the frozen storage of biologic materials. In this study, furcellaran, a polysaccharide related to κ-carrageenan, was studied for its concentration-dependent effect on ice crystal growth and recrystallization. The structure and sulfate content of the utilized furcellaran was analyzed by H nuclear magnetic resonance spectroscopy, ion chromatography, and high-performance size-exclusion chromatography.
View Article and Find Full Text PDFAntifreeze proteins (AFPs) are able to influence the ice crystal growth and the recrystallization process due to the Gibbs-Thomson effect. The binding of the AFP leads to the formation of a curved ice surface and it is generally assumed that there is a critical radius between the proteins on the ice surface that determines the maximal thermal hysteresis. Up to now, this critical radius has not yet been proven beyond doubt or only in poor agreement with the Gibbs-Thomson equation.
View Article and Find Full Text PDFTo correlate the viscosity of camel milk with its atomization properties, first, the viscosity profiles of camel milk are compared with model milk systems (reconstituted skimmed cow milk powder). Then, atomization experiment was conducted using model milk systems and finally, the findings of the atomization experiments were coincided with the viscosity profiles. The effect of total solids of whole (10% to 40%) and skimmed (7.
View Article and Find Full Text PDFProduction of recombinant proteins with microalgae represents an alternative platform over plant- or bacterial-based expression systems for certain target proteins. Secretion of recombinant proteins allows accumulation of the target product physically separate from the valuable algal biomass. To date, there has been little investigation into the dynamics of recombinant protein secretion from microalgal hosts-the culture parameters that encourage secreted product accumulation and stability, while encouraging biomass production.
View Article and Find Full Text PDFDrying is one of the oldest and most commonly used processes in the food manufacturing industry. The conventional way of drying is by forced convection at elevated temperatures. However, this process step often requires a very long treatment time, is highly energy consuming and detrimental to the product quality.
View Article and Find Full Text PDFThe aim of this study was to characterize the process of atomization and drying of layer-by-layer emulsions containing lecithin (single layer emulsion) and lecithin/chitosan (bilayer emulsion) and the oxidative stability of the microcapsules during storage. For this purpose, the analysis of the emulsion spray droplet size during two-fluid nozzle and rotary atomization was carried out to identify suitable process parameters. The drying behaviour of single and bilayer emulsions was investigated by calculation of the volume flow density during single-droplet drying during acoustic levitation.
View Article and Find Full Text PDF