Publications by authors named "Gaudernack G"

Osteosarcoma (OS) remains a dismal malignancy in children and young adults, with poor outcome for metastatic and recurrent disease. Immunotherapies in OS are not as promising as in some other cancer types due to intra-tumor heterogeneity and considerable off-target expression of the potentially targetable proteins. Here we show that chimeric antigen receptor (CAR) T cells could successfully target an isoform of alkaline phosphatase, ALPL-1, which is highly and specifically expressed in primary and metastatic OS.

View Article and Find Full Text PDF

Purpose Of Review: Checkpoint inhibitors (CPIs) have revolutionized treatment outcomes for patients with malignant melanoma. Long-term follow-up shows that a substantial subset of patients who exhibit clinical responses achieve extended overall survival. Nevertheless, most patients do not achieve durable benefit from CPIs, and improvements are urgently needed.

View Article and Find Full Text PDF

Background: This clinical trial evaluated a novel telomerase-targeting therapeutic cancer vaccine, UV1, in combination with ipilimumab, in patients with metastatic melanoma. Translational research was conducted on patient-derived blood and tissue samples with the goal of elucidating the effects of treatment on the T cell receptor repertoire and tumor microenvironment.

Methods: The trial was an open-label, single-center phase I/IIa study.

View Article and Find Full Text PDF

Background: Therapeutic cancer vaccines represent a promising approach to improve clinical outcomes with immune checkpoint inhibition. UV1 is a second generation telomerase-targeting therapeutic cancer vaccine being investigated across multiple indications. Although telomerase is a near-universal tumor target, different treatment combinations applied across indications may affect the induced immune response.

View Article and Find Full Text PDF

Accurate and full-length typing of the HLA region is important in many clinical and research settings. With the advent of next generation sequencing (NGS), several HLA typing algorithms have been developed, including many that are applicable to whole exome sequencing (WES). However, most of these solutions operate by providing the closest-matched HLA allele among the known alleles in IPD-IMGT/HLA Database.

View Article and Find Full Text PDF

Success of adoptive cell therapy mainly depends on the ability of immune cells to persist and function optimally in the immunosuppressive tumor microenvironment. Although present at the cancer site, immune cells become exhausted and/or inhibited, due to the presence of inhibitory receptors such as PD-L1 on malignant cells. Novel genetic strategies to manipulate the PD1/PD-L1 axis comprise (i) PD-1 reversion where the receptor intracellular domain is replaced with an activating unit, (ii) the use of anti-PD-L1 CAR or (iii) the disruption of the PD-1 gene.

View Article and Find Full Text PDF

Telomerase-based therapeutic cancer vaccines (TCVs) have been under clinical investigation for the past two decades. Despite past failures, TCVs have gained renewed enthusiasm for their potential to improve the efficacy of checkpoint inhibition. Telomerase stands as an attractive target for TCVs due to its almost universal presence in cancer and its essential function promoting tumor growth.

View Article and Find Full Text PDF

T-cell receptor (TCR) redirected T cells are considered as the next generation of care for the treatment of numerous solid tumors. KRAS mutations are driver neoantigens that are expressed in over 25% of all cancers and are thus regarded as ideal targets for Adoptive Cell Therapy (ACT). We have isolated four KRAS-specific TCRs from a long-term surviving pancreatic cancer patient vaccinated with a mix of mutated KRAS peptides.

View Article and Find Full Text PDF

Background: Ipilimumab improves survival for patients with metastatic malignant melanoma. Combining a therapeutic cancer vaccine with ipilimumab may increase efficacy by providing enhanced anti-tumor immune responses. UV1 consists of three synthetic long peptides from human telomerase reverse transcriptase (hTERT).

View Article and Find Full Text PDF

Unlabelled: Human telomerase reverse transcriptase (hTERT) is a target antigen for cancer immunotherapy in patients with non-small cell lung cancer (NSCLC). We have tested a novel hTERT vaccine, UV1, designed to give high population coverage. UV1 is composed of three synthetic long peptides containing multiple epitopes identified by epitope spreading data from long-term survivors from previous hTERT vaccination trials.

View Article and Find Full Text PDF

T cell receptor (TCR)-engineered T cell therapy is a promising cancer treatment approach. Human telomerase reverse transcriptase (hTERT) is overexpressed in the majority of tumors and a potential target for adoptive cell therapy. We isolated a novel hTERT-specific TCR sequence, named Radium-4, from a clinically responding pancreatic cancer patient vaccinated with a long hTERT peptide.

View Article and Find Full Text PDF

During the current COVID-19 pandemic, a need for evaluation of already available drugs for treatment of the disease is crucial. Hereby, based on literature review from the current pandemic and previous outbreaks with corona viruses we analyze the impact of the virus infection on cell stress responses and redox balance. High levels of mortality are noticed in elderly individuals infected with SARS-CoV2 and during the previous SARS-CoV1 outbreak.

View Article and Find Full Text PDF

The original version of this article unfortunately included a mistake in Fig. 2b where the images of mice in the tumour control group (right), day 30 (bottom) should be removed as the wrong images (duplicate of day 17) were inserted by mistake. At this time point the tumour control mice were no longer alive and the images were replaced by black areas.

View Article and Find Full Text PDF

Off-target toxicity due to the expression of target antigens in normal tissue or TCR cross-reactivity represents a major risk when using T cell receptor (TCR)-engineered T cells for treatment of solid tumours. Due to the inherent cross-reactivity of TCRs it is difficult to accurately predict their target recognition pre-clinically. It has become evident that direct testing in a human being represents the best evaluation of the risks.

View Article and Find Full Text PDF

Adoptive cell therapy (ACT) with retargeted T cells has produced remarkable clinical responses against cancer, but also serious toxicity. Telomerase is overexpressed in most cancers, but also expressed in some normal cells, raising safety concerns. We hypothesize that ACT with T-helper cell receptors may overcome tumour tolerance, mobilize host immune cells and induce epitope spreading, with limited toxicity.

View Article and Find Full Text PDF

Eradication of tumors by the immune system relies on the efficient activation of a T-cell response. For many years, the main focus of cancer immunotherapy has been on cytotoxic CD8 T-cell. However, stimulation of CD4 helper T cells is critical for the promotion and maintenance of immune memory, thus a good vaccine should evoke a two-dimensional T-cell response.

View Article and Find Full Text PDF

Background: Adoptive T-cell transfer of therapeutic TCR holds great promise to specifically kill cancer cells, but relies on modifying the patient's own T cells ex vivo before injection. The manufacturing of T cells in a tailor-made setting is a long and expensive process which could be resolved by the use of universal cells. Currently, only the Natural Killer (NK) cell line NK-92 is FDA approved for universal use.

View Article and Find Full Text PDF

Effector T cells equipped with engineered antigen receptors specific for cancer targets have proven to be very efficient. Two methods have emerged: the Chimeric Antigen Receptors (CARs) and T-cell Receptor (TCR) redirection. Although very potent, CAR recognition is limited to membrane antigens which represent around 1% of the total proteins expressed, whereas TCRs have the advantage of targeting any peptide resulting from cellular protein degradation.

View Article and Find Full Text PDF

T-cell receptor (TCR) transfer is an attractive strategy to increase the number of cancer-specific T cells in adoptive cell therapy. However, recent clinical and pre-clinical findings indicate that careful consideration of the target antigen is required to limit the risk of off-target toxicity. Directing T cells against mutated proteins such as frequently occurring frameshift mutations may thus be a safer alternative to tumor-associated self-antigens.

View Article and Find Full Text PDF

In newly diagnosed metastatic hormone-naive prostate cancer (mPC), telomerase-based immunotherapy with the novel hTERT peptide vaccine UV1 can induce immune responses with potential clinical benefit. This phase I dose escalation study of UV1 evaluated safety, immune response, effects on prostate-specific antigen (PSA) levels, and preliminary clinical outcome. Twenty-two patients with newly diagnosed metastatic hormone-naïve PC (mPC) were enrolled; all had started androgen deprivation therapy and had no visceral metastases.

View Article and Find Full Text PDF

We herein report retargeting of T-helper (Th) cells against the universal cancer antigen telomerase for use in adoptive cell therapy. The redirected Th cells may counter tumor tolerance, transform the inflammatory milieu, and induce epitope spreading and cancer senescence. We have previously conducted a series of trials evaluating vaccination with telomerase peptides.

View Article and Find Full Text PDF

The most effective anticancer immune responses are probably directed against patient-specific neoantigens. We have developed a melanoma vaccine targeting this individual mutanome based on dendritic cells (DCs) loaded with autologous tumor-mRNA. Here, we report a phase I/II trial evaluating toxicity, immune response and clinical outcome in 31 metastatic melanoma patients.

View Article and Find Full Text PDF

Melanoma often recurs after a latency period of several years, presenting a T cell-edited phenotype that reflects a role for CD8(+) T cells in maintaining metastatic latency. Here, we report an investigation of a patient with multiple recurrent lesions, where poorly immunogenic melanoma phenotypes were found to evolve in the presence of autologous tumor antigen-specific CD8(+) T cells. Melanoma cells from two of three late recurrent metastases, developing within a 6-year latency period, lacked HLA class I expression.

View Article and Find Full Text PDF

We have previously reported two trials in non-small cell lung cancer (NSCLC) evaluating vaccine therapy with the telomerase peptide GV1001. The studies demonstrated considerable differences in survival among immune responders, highlighting that an immune response is not necessarily beneficial. In the present study, we conducted long-term clinical follow-up and investigated immunological factors hypothesized to influence clinical efficacy.

View Article and Find Full Text PDF

Cancer therapy with T cells expressing chimeric antigen receptors (CARs) has produced remarkable clinical responses in recent trials, but also severe side effects. Whereas most protocols use permanently reprogrammed T cells, we have developed a platform for transient CAR expression by mRNA electroporation. This approach may be useful for safe clinical testing of novel receptors, or when a temporary treatment period is desirable.

View Article and Find Full Text PDF