Caustic dosing to raise pH above 10.0 for short periods (hours) is often used by water utilities for controlling sulfide formation in sewers. However the effectiveness of this strategy is rarely reported and the impact of pH level and exposure time on the effectiveness is largely unknown.
View Article and Find Full Text PDFSci Total Environ
January 2013
The effectiveness of three bioproducts (also known as biomaterials) for liquid-phase biological treatment (LPBT) of sewer biofilms to control detrimental build-up of sulphide (H(2)S) and methane (CH(4)) in sewers was tested in a laboratory system mimicking a rising/force main sewer pipe. Bioproduct A claims to disrupt cell-to-cell communication of sewer anaerobic biofilms while Bioproducts B and C claim to enhance sulphidotrophic (sulphide-oxidising) capacity of the sewer biofilm, to avoid sulphide accumulation. The results demonstrated that all three bioproducts tested had no or negligible impact on sulphide or methane control, as opposed to traditional sulphide-controlling chemicals widely used by the wastewater industry such as oxygen, nitrate, iron salts and magnesium hydroxide.
View Article and Find Full Text PDFThe impact of brewery wastewater discharge on sulfide and methane production in a sewer was assessed. Experiments were carried out on laboratory scale sewer reactors consisting of both an experimental and a control reactor. The control reactor was intermittently fed with real fresh sewage while the experimental reactor was fed with a mixture of brewery and domestic wastewater at two different proportions (10 and 25% v/v).
View Article and Find Full Text PDFA new method for testing the effectiveness of chemical products for sulfide control in sewers is reported. The method, called SCORe-CT (Sewer Corrosion and Odour Research - Chemical Testing), consists of two specially designed laboratory-scale systems that mimic sulfide production in real rising main sewers, and a multi-phase and multi-facet testing protocol. The monitoring tools/methods include both routine chemical analysis of various sulfurous and carbonaceous compounds in liquid and their on-line monitoring using advanced sensors.
View Article and Find Full Text PDFThe integrated chemical-biological degradation combining advanced oxidation by UV/H(2)O(2) followed by aerobic biodegradation was used to degrade C.I. Reactive Azo Red 195A, commonly used in the textile industry in Australia.
View Article and Find Full Text PDF