Aim: To determine the feasibility and potential benefit of a full cardiac magnetic resonance (CMR) work-up for assessing the location of scarred myocardium and the region of latest contraction (LCR) in patients with ischaemic cardiomyopathy (ICM) undergoing cardiac resynchronisation therapy (CRT).
Methods: In 30 patients, scar identification and contraction timing analysis was retrospectively performed on CMR images. Fluoroscopic left ventricular (LV) lead positions were scored with respect to scar location, and when placed outside scar, with respect to the LCR.
Follistatin-like 1 (FSTL1), a secreted glycoprotein, has been shown to participate in regulating developmental processes and to be involved in states of disease and injury. Spatiotemporal regulation and posttranslational modifications contribute to its specific functions and make it an intriguing candidate to study disease mechanisms and potentially develop new therapies. With cardiovascular diseases as the primary cause of death worldwide, clarification of mechanisms underlying cardiac regeneration and revascularization remains essential.
View Article and Find Full Text PDFBackground: Commonly used strategies for cell delivery to the heart are intramyocardial injection and intracoronary (IC) infusion, both having their advantages and disadvantages. Therefore, alternative strategies, such as retrograde coronary venous infusion (RCVI), are explored. The aim of this confirmatory study was to compare cardiac cell retention between RCVI and IC infusion.
View Article and Find Full Text PDFAn important aspect of cell therapy in the field of cardiac disease is safe and effective delivery of cells. Commonly used delivery strategies such as intramyocardial injection and intracoronary infusion both present with advantages and disadvantages. Therefore, alternative delivery routes are explored, such as retrograde coronary venous infusion (RCVI).
View Article and Find Full Text PDFCardiac cell therapy is a strategy to treat patients with chronic myocardial infarction (MI). No consensus exists regarding the optimal cell type. First, a comparison between autologous bone marrow-derived mononuclear cells (BMMNC) and mesenchymal stem cells (MSC) on therapeutic efficacy after MI was performed.
View Article and Find Full Text PDF