is a legume with high agronomic potential and available transcriptomic data for which lncRNAs have not been studied. Therefore, our objective was to identify, characterize, and validate the drought-responsive lncRNAs in . To achieve this, we used a multilevel approach based on lncRNA prediction, annotation, subcellular location, thermodynamic characterization, structural conservation, and validation.
View Article and Find Full Text PDFFast-growing trees like Capirona, Bolaina, and Pashaco have the potential to reduce forest degradation because of their ecological features, the economic importance in the Amazon Forest, and an industry based on wood-polymer composites. Therefore, a practical method to discriminate specie (to avoid illegal logging) and determine chemical composition (tree breeding programs) is needed. This study aimed to validate a model for the classification of wood species and a universal model for the rapid determination of cellulose, hemicellulose, and lignin using FTIR spectroscopy coupled with chemometrics.
View Article and Find Full Text PDFThe high maize () diversity in Peru has been recognized worldwide, but the investigation focused on its integral health-relevant and bioactive characterization is limited. Therefore, this research aimed at studying the variability of the primary and the secondary (free and dietary fiber-bound phenolic, and carotenoid compounds) metabolites of three maize types (white, red, and orange) from the Peruvian Andean race at different maturity stages (milk-S1, dough-S2, and mature-S3) using targeted and untargeted methods. In addition, their antioxidant potential, and α-amylase and α-glucosidase inhibitory activities relevant for hyperglycemia management were investigated using models.
View Article and Find Full Text PDFThe high diversity of the Peruvian Andean maize ( L.) represents a biological and genetic heritage relevant for food security, but few studies are targeted toward its characterization and consequent valorization and preservation. The objective of this study was to evaluate the potential of the Peruvian Andean maize race with respect to its bioactive profiles (free and bound phenolic and carotenoid composition), physical characteristics, and antioxidant properties.
View Article and Find Full Text PDFAdequate intake of micronutrients is necessary to reduce widespread health issues linked to low intake of iron (Fe), zinc (Zn), boron (B), copper (Cu), and manganese (Mn). Because more than two billion people suffer from micronutrient deficiency globally, to address this problem, highly-nutritious ancestral Peruvian crops like tarwi can be an important component of food security. Thus, our work explores the tarwi micronutrient variability to select biofortified genotypes without affecting seed size and weight.
View Article and Find Full Text PDFSparteine is an alkaloid with bacteriostatic activity on the genus Mycobacterium. The aim of this study was to evaluate the antimicrobial activity of sparteine on the growth of 4 ATCC strains of Mycobacterium tuberculosis (susceptible, resistant to isoniazid, resistant to rifampicin and multidrug-resistant) in vitro. Validation of bactericidal activity of sparteine sulfate was carried out through an adaptation of the Microscopic-Observation Drug-Susceptibility (MODS) method according to the guidelines of the Peruvian National Health Institute.
View Article and Find Full Text PDFRuBisCO is the most abundant enzyme on earth; it regulates the organic carbon cycle in the biosphere. Studying its structural evolution will help to develop new strategies of genetic improvement in order to increase food production and mitigate CO emissions. In the present work, we evaluate how the evolution of sequence and structure among isoforms I, II and III of RuBisCO defines their intrinsic flexibility and residue-residue interactions.
View Article and Find Full Text PDFDEAD-box RNA helicases are involved in many aspects of RNA metabolism and in diverse biological processes in plants. Arabidopsis thaliana mutants of two DEAD-box RNA helicases, STRESS RESPONSE SUPPRESSOR1 (STRS1) and STRS2 were previously shown to exhibit tolerance to abiotic stresses and up-regulated stress-responsive gene expression. Here, we show that Arabidopsis STRS-overexpressing lines displayed a less tolerant phenotype and reduced expression of stress-induced genes confirming the STRSs as attenuators of Arabidopsis stress responses.
View Article and Find Full Text PDFIt is known that environmental factors can affect the biosynthesis of leaf metabolites. Similarly, specific pairwise plant-microbe interactions modulate the plant's metabolome by stimulating production of phytoalexins and other defense-related compounds. However, there is no information about how different soil microbiomes could affect the plant growth and the leaf metabolome.
View Article and Find Full Text PDFPlant roots exhibit remarkable developmental plasticity in response to local soil conditions. It is shown here that mild salt stress stimulates a stress-induced morphogenic response (SIMR) in Arabidopsis thaliana roots characteristic of several other abiotic stresses: the proliferation of lateral roots (LRs) with a concomitant reduction in LR and primary root length. The LR proliferation component of the salt SIMR is dramatically enhanced by the transfer of seedlings from a low to a high NO3- medium, thereby compensating for the decreased LR length and maintaining overall LR surface area.
View Article and Find Full Text PDFAbiotic stresses are a primary cause of crop loss worldwide. The convergence of stress signalling pathways to a common set of transcription factors suggests the existence of upstream regulatory genes that control plant responses to multiple abiotic stresses. To identify such genes, data from published Arabidopsis thaliana abiotic stress microarray analyses were combined with our presented global analysis of early heat stress-responsive gene expression, in a relational database.
View Article and Find Full Text PDF