Bats are natural reservoirs of a variety of zoonotic viruses, many of which cause severe human diseases. Characterizing viruses of bats inhabiting different geographical regions is important for understanding their viral diversity and for detecting viral spillovers between animal species. Herein, the diversity of DNA viruses of five arthropodophagous bat species from Argentina was investigated using metagenomics.
View Article and Find Full Text PDFThe PhoP/PhoQ two-component signaling system coordinates the spatiotemporal expression of key virulence factors that confer pathogenic traits. Through biochemical and structural analyses, we found that the sensor histidine kinase PhoQ acted as a receptor for long-chain unsaturated fatty acids (LCUFAs), which induced a conformational change in the periplasmic domain of the PhoQ protein. This resulted in the repression of PhoQ autokinase activity, leading to inhibition of the expression of PhoP/PhoQ-dependent genes.
View Article and Find Full Text PDFBats provide important ecosystem services as pollinators, seed dispersers, and/or insect controllers, but they have also been found harboring different viruses with zoonotic potential. Virome studies in bats distributed in Asia, Africa, Europe, and North America have increased dramatically over the past decade, whereas information on viruses infecting South American species is scarce. We explored the virome of , an insectivorous New World bat species inhabiting a maternity colony in Rosario (Argentina), by a metagenomic approach.
View Article and Find Full Text PDFIntroduction: The PhoP-PhoQ system from Salmonella enterica serovar Typhimurium controls the expression of factors that are critical for the bacterial entry into host cells and the bacterial intramacrophage survival. Therefore it constitutes an interesting target to search for compounds that would control Salmonella virulence. Localisation of such compounds in complex matrixes could be facilitated by thin-layer chromatography (TLC) bioautography.
View Article and Find Full Text PDFThe Salmonella enterica serovar Typhimurium PhoP/PhoQ system has largely been studied as a paradigmatic two-component regulatory system not only to dissect structural and functional aspects of signal transduction in bacteria but also to gain knowledge about the versatile devices that have evolved allowing a pathogenic bacterium to adjust to or counteract environmental stressful conditions along its life cycle. Mg(2+) limitation, acidic pH, and the presence of cationic antimicrobial peptides have been identified as cues that the sensor protein PhoQ can monitor to reprogram Salmonella gene expression to cope with extra- or intracellular challenging conditions. In this work, we show for the first time that long chain unsaturated free fatty acids (LCUFAs) present in Salmonella growth medium are signals specifically detected by PhoQ.
View Article and Find Full Text PDF