Colloids Surf B Biointerfaces
December 2023
Preventing bacterial development on surfaces is essential to avoid problems caused by biofouling. Surfaces decorated with gold nanoparticles have been shown to thermally kill bacteria under high-intensity NIR illumination. In this study, we evaluated the colonization by E.
View Article and Find Full Text PDFIn response to light, as part of a two-component system, the Brucella blue light-activated histidine kinase (LOV-HK) increases its autophosphorylation, modulating the virulence of this microorganism. The Brucella histidine kinase (HK) domain belongs to the HWE family, for which there is no structural information. The HWE family is exclusively present in proteobacteria and usually coupled to a wide diversity of light sensor domains.
View Article and Find Full Text PDFThe histidine kinase (HK) domain belonging to the light-oxygen-voltage histidine kinase (LOV-HK) from Brucella abortus is a member of the HWE family, for which no structural information is available, and has low sequence identity (20%) to the closest HK present in the PDB. The `off-edge' S-SAD method in macromolecular X-ray crystallography was used to solve the structure of the HK domain from LOV-HK at low resolution from crystals in a low-symmetry space group (P21) and with four copies in the asymmetric unit (∼108 kDa). Data were collected both from multiple crystals (diffraction limit varying from 2.
View Article and Find Full Text PDFBrucella is the causative agent of the zoonotic disease brucellosis, and its success as an intracellular pathogen relies on its ability to adapt to the harsh environmental conditions that it encounters inside the host. The Brucella genome encodes a sensor histidine kinase containing a LOV domain upstream from the kinase, LOVHK, which plays an important role in light-regulated Brucella virulence. In this report we study the intracellular signaling pathway initiated by the light sensor LOVHK using an integrated biochemical and genetic approach.
View Article and Find Full Text PDFWe present here the complete genome sequence of Bradyrhizobium japonicum strain E109, one of the most used rhizobacteria for soybean inoculation in Argentina since the 1970s. The genome consists of a 9.22-Mbp single chromosome and contains several genes related to nitrogen fixation, phytohormone biosynthesis, and a rhizospheric lifestyle.
View Article and Find Full Text PDFWe present the complete genome sequence of Azospirillum brasilense Az39, isolated from wheat roots in the central region of Argentina and used as inoculant in extensive and intensive agriculture during the last four decades. The genome consists of 7.39 Mb, distributed in six replicons: one chromosome, three chromids, and two plasmids.
View Article and Find Full Text PDFTwitching motility in Acinetobacter baylyi ADP1 is inhibited by moderate intensities of blue light in a temperature-dependent manner (maximally at 20 °C). We analysed the involvement of four predicted blue-light sensing using flavin (BLUF)-domain-containing proteins encoded in the genome of this strain in the twitching motility phenotype. All four genes were expressed both in light and in darkness.
View Article and Find Full Text PDFBrucella is the causative agent of the zoonotic disease brucellosis, which is endemic in many parts of the world. The success of Brucella as pathogen relies in its ability to adapt to the harsh environmental conditions found in mammalian hosts. One of its main adaptations is the induction of the expression of different genes involved in respiration at low oxygen tension.
View Article and Find Full Text PDFParamyxoviruses share the essential RNA polymerase complex components, namely, the polymerase (L), phosphoprotein (P), and nucleoprotein (N). Human respiratory syncytial virus (RSV) P is the smallest polypeptide among the family, sharing a coiled coil tetramerization domain, which disruption renders the virus inactive. We show that unfolding of P displays a first transition with low cooperativity but substantial loss of α-helix content and accessibility to hydrophobic sites, indicative of loose chain packing and fluctuating tertiary structure, typical of molten globules.
View Article and Find Full Text PDFRhizobium leguminosarum is a soil bacterium that infects root hairs and induces the formation of nitrogen-fixing nodules on leguminous plants. Light, oxygen, and voltage (LOV)-domain proteins are blue-light receptors found in higher plants and many algae, fungi, and bacteria. The genome of R.
View Article and Find Full Text PDFBrucella spp. are facultative intracellular bacteria pathogenic for many mammalian species including humans, causing a disease called brucellosis. Learning how Brucella adapts to its intracellular niche is crucial for understanding its pathogenesis mechanism, allowing for the development of new and more effective vaccines and treatments against brucellosis.
View Article and Find Full Text PDFLight-oxygen-voltage (LOV) domains are blue-light-activated signaling modules present in a wide range of sensory proteins. Among them, the histidine kinases are the largest group in prokaryotes (LOV-HK). Light modulates the virulence of the pathogenic bacteria Brucella abortus through LOV-HK.
View Article and Find Full Text PDFThe sialic acid present in the protective surface mucin coat of Trypanosoma cruzi is added by a membrane anchored trans-sialidase (TcTS), a modified sialidase that is expressed from a large gene family. In this work, we analyzed single domain camelid antibodies produced against trans-sialidase. Llamas were immunized with a recombinant trans-sialidase and inhibitory single-domain antibody fragments were obtained by phage display selection, taking advantage of a screening strategy using an inhibition test instead of the classic binding assay.
View Article and Find Full Text PDFHistidine kinases, used for environmental sensing by bacterial two-component systems, are involved in regulation of bacterial gene expression, chemotaxis, phototaxis, and virulence. Flavin-containing domains function as light-sensory modules in plant and algal phototropins and in fungal blue-light receptors. We have discovered that the prokaryotes Brucella melitensis, Brucella abortus, Erythrobacter litoralis, and Pseudomonas syringae contain light-activated histidine kinases that bind a flavin chromophore and undergo photochemistry indicative of cysteinyl-flavin adduct formation.
View Article and Find Full Text PDFTrypanosoma cruzi, the agent of Chagas disease, expresses a modified sialidase, the trans-sialidase, which transfers sialic acid from host glycoconjugates to beta-galactose present in parasite mucins. Another American trypanosome, Trypanosoma rangeli, expresses a homologous protein that has sialidase activity but is devoid of transglycosidase activity. Based on the recently determined structures of T.
View Article and Find Full Text PDFSialidases are a superfamily of sialic-acid-releasing enzymes that are of significant interest due to their implication as virulence factors in the pathogenesis of a number of diseases. However, extensive studies of viral and microbial sialidases have failed to provide a comprehensive picture of their mechanistic properties, in part because the structures of competent enzyme-substrate complexes and reaction intermediates have never been described. Here we report these structures for the Trypanosoma cruzi trans-sialidase (TcTS), showing that catalysis by sialidases occurs via a similar mechanism to that of other retaining glycosidases, but with some intriguing differences that may have evolved in response to the substrate structure.
View Article and Find Full Text PDFChagas' disease, caused by Trypanosoma cruzi, affects about 18 million people in Latin America, and no effective treatment is available to date. To acquire sialic acid from the host glycoconjugates, T. cruzi expresses an unusual surface sialidase with trans-sialidase activity (TcTS) that transfers the sugar to parasite mucins.
View Article and Find Full Text PDFTrypanosoma brucei is the cause of the diseases known as sleeping sickness in humans (T. brucei ssp. gambiense and ssp.
View Article and Find Full Text PDF