Publications by authors named "Gaston Otarola"

Objective: The purpose of this study was to determine the effects of a single exposure of bupivacaine on the mechanical properties of bovine cartilage explants at 3 weeks.

Design: Femoral condyle articular cartilage explants were aseptically harvested from juvenile bovine stifle joints before being exposed to chondrogenic medium containing 0.50% (wt/vol) bupivacaine, 0.

View Article and Find Full Text PDF

Objective: The medial femoral condyle of the knee exhibits some of the highest incidences of chondral degeneration. However, a dearth of healthy human tissues has rendered it difficult to ascertain whether cartilage in this compartment possesses properties that predispose it to injuries. Assessment of young, healthy tissue would be most representative of the tissue's intrinsic properties.

View Article and Find Full Text PDF

Signals that recapitulate in vitro the conditions found in vivo, such as hypoxia or mechanical forces, contribute to the generation of tissue-engineered hyaline-like tissues. The cell regulatory processes behind hypoxic and mechanical stimuli rely on ion concentration; iron is required to degrade the hypoxia inducible factor 1a (HIF1α) under normoxia, whereas the initiation of mechanotransduction requires the cytoplasmic increase of calcium concentration. In this work, we propose that ion modulation can be used to improve the biomechanical properties of self-assembled neocartilage constructs derived from rejuvenated expanded minipig rib chondrocytes.

View Article and Find Full Text PDF

Long-term clinical repair of articular cartilage remains elusive despite advances in cartilage tissue engineering. Only one cartilage repair therapy classified as a "cellular and gene therapy product" has obtained Food and Drug Administration (FDA) approval within the past decade although more than 200 large animal cartilage repair studies were published. Here, we identify the challenges impeding translation of strategies and technologies for cell-based cartilage repair, such as the disconnect between university funding and regulatory requirements.

View Article and Find Full Text PDF

Physiological loading of knee cartilage is highly dynamic and may contribute to the progression of osteoarthritis. Thus, an understanding of cartilage's dynamic mechanical properties is crucial in cartilage research. In this study, vibrometry was used as a fast (2 h), noncontact and novel alternative to the slower (30 h), traditional mechanical and biochemical assays for characterization of cartilage from the condyle, patella, trochlear groove and meniscus.

View Article and Find Full Text PDF

Ion signaling through Ca and Na plays a key role in mechanotransduction and encourages a chondrogenic phenotype and tissue maturation. In this study, we propose that the pleiotropic effects of Ca and Na modulation can be used to induce maturation and improvement of neocartilage derived from redifferentiated expanded chondrocytes from minipig rib cartilage. Three ion modulators were employed: (1) 4α-phorbol-12,13-didecanoate (4-αPDD), an agonist of the Ca-permeable transient receptor potential vanilloid 4 (TRPV4), (2) ouabain, an inhibitor of the Na/K pump, and (3) ionomycin, a Ca ionophore.

View Article and Find Full Text PDF

The surface of articular cartilage is integral to smooth, low-friction joint articulation. However, the majority of cartilage literature rarely includes measurements of surface characteristics and function. This may, in part, be due to a shortage of or unfamiliarity with fast, nondestructive, and, preferably, noncontact methods that can be applied to large cartilage surfaces for evaluating cartilage surface characteristics.

View Article and Find Full Text PDF

Background: Although the toxic effects of bupivacaine on chondrocyte monolayer culture have been well described, its cellular and mechanical effects on native and engineered articular cartilage remain unclear. For the repair of articular cartilage defects, fresh autologous and allogenic cartilage grafts are commonly used, and engineered cell-based therapies are emerging. The outcome of grafting therapies aimed at repairing damaged cartilage relies largely on maintaining proper viability and mechanical suitability of the donor tissues.

View Article and Find Full Text PDF

Despite intensive media coverage and international regulations, man-made persistent organic pollutants such as dioxins represent a serious environmental and health threat. Their detection by sophisticated chromatography technologies is highly complex, impeding the constant monitoring of food or environmental samples. This limitation has fostered the development of generations of bioassays exploiting the molecular function of the aryl hydrocarbon receptor (AhR), which binds toxic compounds and directly activates the transcription of target genes.

View Article and Find Full Text PDF

Osteogenesis is the fundamental process by which bones are formed, maintained and regenerated. The osteoblasts deposit the bone mineralized matrix by secreting large amounts of extracellular proteins and by allowing the biochemical conditions for the nucleation of hydroxyapatite crystals. Normal bone formation requires a tight control of osteoblastic activity, and therefore, osteoblasts represent a major focus of interest in biomedical research.

View Article and Find Full Text PDF