Publications by authors named "Gaston E Small"

Soil acidification induced by reactive nitrogen (N) inputs can alter the structure and function of terrestrial ecosystems. Because different N-transformation processes contribute to the production and consumption of H , the magnitude of acidification likely depends on the relative amounts of organic N (ON) and inorganic N (IN) inputs. However, few studies have explicitly measured the effects of N composition on soil acidification.

View Article and Find Full Text PDF

The use of compost in urban agriculture offers an opportunity to increase nutrient recycling in urban ecosystems, but recent studies have shown that compost application often results in phosphorus (P) being applied far in excess of crop nutrient demand, creating the potential for P loss through leachate and runoff. Management goals such as maximizing crop yields or maximizing the mass of nutrients recycled from compost may inadvertently result in P loss, creating a potential ecosystem disservice. Here, we report the results from the first two years of an experimental study in which four different crops grown in raised-bed garden plots with high background P and organic matter received one of two types of compost (municipal compost made from urban organics waste, or manure-based compost) at two different levels (applied based on crop N or P demand), while additional treatments received synthetic N and P fertilizer or no soil amendments.

View Article and Find Full Text PDF

The heavy reliance on compost inputs in urban gardening provides opportunities to recycle nutrients from the urban waste stream, but also creates potential for buildup and loss of soil phosphorus (P). We previously documented P in leachate from raised-bed garden plots in which compost had been applied, but the fate of this P is not known. Here, we measured P concentrations in soils below four or six-year-old urban garden plots that were established for research.

View Article and Find Full Text PDF

Climate change is expected to profoundly affect the Great Lakes region of North America. An increase in intensity and frequency of rain events is anticipated to deliver more runoff and to increase riverine inputs to Lake Superior's ecosystem. The effects of these changes on key biogeochemical parameters were analyzed by coupling satellite data, water column sensor profiles, and discrete surface-water sampling after two "500-year" flood events in the Lake Superior basin.

View Article and Find Full Text PDF
Article Synopsis
  • Research on lake eutrophication focuses on phosphorus and nitrogen levels, with a significant emphasis on understanding nitrogen to phosphorus (N:P) ratios, as they impact species composition and cyanobacteria toxin production.
  • A three-year study of 80 shallow lakes in Minnesota assessed factors such as watershed characteristics and fish biomass, revealing that the lake's alternative state (turbid vs. clear) was the strongest influencer of N:P ratios, with turbid lakes exhibiting higher nitrogen levels than clear lakes.
  • The study also found that lakes transitioning from turbid to clear states experienced significant changes in nitrogen and denitrification rates, indicating that clear lakes may have improved nutrient management due to enhanced denitrification processes, making them crucial for ecosystem health
View Article and Find Full Text PDF

Animals can be important in modulating ecosystem-level nutrient cycling, although their importance varies greatly among species and ecosystems. Nutrient cycling rates of individual animals represent valuable data for testing the predictions of important frameworks such as the Metabolic Theory of Ecology (MTE) and ecological stoichiometry (ES). They also represent an important set of functional traits that may reflect both environmental and phylogenetic influences.

View Article and Find Full Text PDF

Body size can be an important factor controlling consumer stoichiometry. In holometabolous insects, body size is typically associated with nutrient storage. Consumer stoichiometry is known to vary within species across a range of body sizes; however, the contribution of nutrient storage to this variation is not well understood.

View Article and Find Full Text PDF

Using samples from eastern China (c. 25 - 41° N and 99 - 123° E) and from a common garden experiment, we investigate how Mg concentration varies with climate across multiple trophic levels. In soils, plant tissue (Oriental oak leaves and acorns), and a specialist acorn predator (the weevil Curculio davidi), Mg concentration increased significantly with different slopes from south to north, and generally decreased with both mean annual temperature (MAT) and precipitation (MAP).

View Article and Find Full Text PDF

Human activities have increased the availability of reactive nitrogen in many ecosystems, leading to negative impacts on human health, biodiversity, and water quality. Freshwater ecosystems, including lakes, streams, and wetlands, are a large global sink for reactive nitrogen, but factors that determine the efficacy of freshwater nitrogen removal rates are poorly known. Using a global lake data set, we show that the availability of phosphorus, a limiting nutrient, affects both annual nitrogen removal rate and efficiency.

View Article and Find Full Text PDF

Increasing empirical evidence has documented variability in elemental composition within species. However, the extent, causes, and pattern of variability in consumer stoichiometry across a large geographical scale are not well understood. Here, we investigated this issue using a holometabolous insect, weevils (Curculio davidi Fairmaire).

View Article and Find Full Text PDF

Research into the buffering mechanisms and ecological consequences of acidification in tropical streams is lacking. We have documented seasonal and episodic acidification events in streams draining La Selva Biological Station, Costa Rica. Across this forested landscape, the severity in seasonal and episodic acidification events varies due to interbasin groundwater flow (IGF).

View Article and Find Full Text PDF

Because nutrient enrichment can increase ecosystem productivity, it may enhance resource flows to adjacent ecosystems as organisms cross ecosystem boundaries and subsidize predators in recipient ecosystems. Here, we quantified the biomass and abundance of aquatic emergence and terrestrial spiders in a reference and treatment stream that had been continuously enriched with nitrogen and phosphorus for 5 years. Because we previously showed that enrichment increased secondary production of stream consumers, we predicted that aquatic emergence flux would be higher in the treatment stream, subsequently increasing the biomass and abundance of terrestrial spiders.

View Article and Find Full Text PDF

Nutrient recycling by animals is a potentially important biogeochemical process in both terrestrial and aquatic ecosystems. Stoichiometric traits of individual species may result in some taxa playing disproportionately important roles in the recycling of nutrients relative to their biomass, acting as keystone nutrient recyclers. We examined factors controlling the relative contribution of 12 Neotropical fish species to nutrient recycling in four streams spanning a range of phosphorus (P) levels.

View Article and Find Full Text PDF

A central tenet of ecological stoichiometry is that consumer elemental composition is relatively independent of food resource nutrient content. Although the P content of some invertebrate consumer taxa can increase as a consequence of P-enriched food resources, little is known about how ecosystem nutrient loading can affect the elemental composition of entire consumer assemblages. Here we examine the potential for P enrichment across invertebrate consumer assemblages in response to chronic high P loading.

View Article and Find Full Text PDF