Publications by authors named "Gasperi J"

Microplastics (MP) have been reported in many rivers across the globe but their depositional and archiving mechanisms in sediments are not fully understood yet. The aim of this study was to identify potential controlling factors of MP spatial distribution in surface sediment after a characterisation (sediment composition, hydrological conditions, sedimentary environment) of 14 sampling sites in an 8 km segment of the Loire river. Samples were collected from 3 sedimentary environments (sandbars, riverbanks and semi-active channels) with diverse flooding frequencies, grain size distributions and total organic carbon (TOC) contents.

View Article and Find Full Text PDF

Stormwater systems, such as infiltration ponds or basins, play a critical role in managing runoff water and reducing particulate pollution loads in downstream environments through decantation. Road runoff carries several pollutants, including trace metals and tire and road wear particles (TRWP). To improve our understanding of infiltration ponds as regards TRWP and their capacity to reduce TRWP loads, we have studied the occurrence, spatial distribution and size distribution of TRWP, as well as their relationship with metals, in considering the input of metals as tire additives, in the sediments of an infiltration pond located along the Nantes urban ring road (Western France), which happens to be a high-traffic roadway site.

View Article and Find Full Text PDF

Urban areas concentrate on human activities that generate large amounts of waste. A small fraction is mismanaged and ends up on urban surfaces and eventually in waterways. The fraction reaching waterways is usually estimated using poorly constrained data, while litter density on urban surfaces and its subsequent transfer dynamics are also poorly documented.

View Article and Find Full Text PDF
Article Synopsis
  • Anthropogenic litter, specifically plastic, significantly impacts ecosystems, and scientists from various fields are working together to assess and reduce these pollutants.
  • The research aimed to determine the best methods for monitoring macroplastic litter in rivers and oceans by surveying 46 researchers who evaluated different techniques such as visual census, drone surveys, satellite imagery, and GPS/GNSS trackers.
  • Results indicated that traditional visual census and drone use were the most favored methods (scoring 3.5 and 2.0), while satellite imagery and GPS trackers were less effective due to validation challenges and range limitations, with scores below 1.2.
View Article and Find Full Text PDF

Microplastic (MP) pollution is a critical environmental challenge worldwide, however limited research is reported in remote lakes of Pakistan. This study assessed MPs (>5 mm) prevalence, distribution and risk perspective in water and sediment of eight remote and high-altitude lakes (>1500 m above sea level) of Gilgit Baltistan, Pakistan. The lakes exhibited an average abundance of 152.

View Article and Find Full Text PDF

Urban areas constitute a major hotspot of litter, including plastic litter, that stormwater can wash off towards waterways. However, few studies quantified and characterized litter densities in urban areas and fluxes transported by stormwater networks. Moreover, little information is available on litter transport dynamics in stormwater, and on the factors driving this transport.

View Article and Find Full Text PDF

Microplastics (MPs, plastic items from 1 µm to 5 mm in size) are present in all environmental compartments. The evaluation of their concentration, fate, and spatial distribution is still a challenge for the scientific community. This concern is just debuting in developing countries, (i.

View Article and Find Full Text PDF

The contamination of freshwater with microplastics (MPs) has been established globally. While the analysis of MPs has predominantly involved spectroscopic methods for revealing particle numbers, the potential of employing spectroscopy for mass estimation has been underutilized. Consequently, there is a need to enhance our understanding of the mass loads of MPs and ensure the complementarity and comparability of various techniques for accurate quantification.

View Article and Find Full Text PDF

We report the first empirical confirmation of the co-occurrence of organophosphate esters (OPEs) additives and microplastics (MPs) in benthic compartments from the Loire estuary. Higher median concentrations of MPs (3387 items/kg dw), ∑tri-OPEs (12.0 ng/g dw) and ∑di-OPEs (0.

View Article and Find Full Text PDF

The quantification of microplastic (MP) pollution in rivers is often constrained by a lack of historical data on a multi-decadal scale, which hinders the evaluation of public policies. In this study, MP contents and trends were analyzed in dated sediment cores sampled upstream and downstream of a large metropolis, in environmental deposits that exhibited consistent sedimentation patterns from the 1980s to 2021. After a thorough sedimentological analysis, MPs were quantified in samples by micro Fourier Transform InfraRed spectroscopy (μFTIR imaging) and a density separation and organic matter digestion procedure.

View Article and Find Full Text PDF

Here, microplastic atmospheric deposition data collected at an urban site during the French national lockdown of spring 2020 is compared to deposition data from the same site in a period of normal activity. Bulk atmospheric deposition was collected on the vegetated roof of a suburban campus from the Greater Paris and analysed for microplastics using a micro-FTIR imaging methodology. Significantly lower deposition rates were measured overall during the lockdown period (median 5.

View Article and Find Full Text PDF

During wet weather events, combined sewer overflows (CSOs) transfer large amount of particulate matter and associated pollutants into surrounding water bodies, thereby deteriorating the recipients' ecological health. Resuspension of sewer sediments during these events contributes significantly to pollution level of these discharges. However, how much this in-sewer process contributes to CSOs' quality regarding microplastic (MP) pollution is little known.

View Article and Find Full Text PDF

This study aims to examine tire and road wear particle (TRWP) emissions under realistic conditions in order to provide some valuable insights into understanding their sources and fate in the environment. TRWP emissions were evaluated with a fully instrumented vehicle driving on five representative road types: urban, ring road, suburban, highway, and rural. Multiple vehicle dynamic variables were recorded to assess the factors influencing these emissions.

View Article and Find Full Text PDF

The dispersed pollution caused by microplastics (MPs) represents a current and global concern. While the fragmentation of plastic debris into smaller particles occurs in rivers, little MP research is done on freshwater species and is published compared to the marine environment. The Loire River is the longest river in France and is subject to moderate to high anthropic pressure while it represents major societal and economic issues.

View Article and Find Full Text PDF

The aim of this study was to explore the adverse effects of a microplastic (MP) mixture obtained from litter accumulated in the Seine River (France) compared to those of their major co-plasticizer, dibutylphthalate (DBP), on the sentinel species Hediste diversicolor. A suite of biomarkers has been investigated to study the impacts of MPs (100 mg kg sediment), DBP (38 μg kg sediment) on worms compared to non-exposed individuals after 4 and 21 days. The antioxidant response, immunity, neurotoxicity and energy and respiratory metabolism were investigated using biomarkers.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines microplastic (MP) occurrence in river sediments from three urban rivers in Vietnam's Red River Delta, discovering significant variability in MP concentrations ranging from 1,600 to 94,300 items per kilogram.
  • Microplastics were primarily found in fiber form, made mostly of polypropylene and polyethylene, with no notable seasonal effect on their distribution.
  • A trend was identified showing that higher microplastic concentrations correlated with areas of high organic matter and population density, indicating potential hotspots for microplastics in urban river environments.
View Article and Find Full Text PDF

The contamination of microplastics (MP) in freshwater environments represent a major way for the MP transport in the environment. The assessment of MP pollution in freshwater compartments is then important to visualize the pressure and the impacts on medium, and to set up necessary measures. In this context, this study focused on the influence of anthropogenic activities of a medium French city (Angers) on MP levels in samples collected from the Loire River, the longest river in France.

View Article and Find Full Text PDF

Bis(2-ethylhexyl) phthalate (DEHP) is a plasticizer that has been massively used since the second part of the twentieth century by the plastic industry to provide softness properties to PVC. This chemical is considered as toxic to reproduction and endocrine disrupting, and a wide range of uses are now forbidden by the EU. Despite these regulations, DEHP is still found to be a widespread contaminant in watersheds in the EU.

View Article and Find Full Text PDF

Dam reservoirs can strongly influence the spatial distribution of sediment pollution by microplastics (MP). The Villerest reservoir (Loire River, 36 km long) is a good candidate to study the relationship between MP pollution and hydrosedimentary processes. Sediments were collected from the dam-controlled river section and from 3 km downstream.

View Article and Find Full Text PDF

The quantification of macroplastic fluxes transferred by rivers toward the pelagic environment requires a better understanding of macrodebris transfer processes in estuarine environments. Following the strategy adopted in the Seine estuary, this study aims to characterize macroplastic trajectories in the Loire estuary. Between January 2020 and July 2021, 35 trajectories were monitored using plastic bottles equipped with GPS-trackers.

View Article and Find Full Text PDF

Land-based sources of riverine macrolitter are now recognized as a major concern, but few field data on litter amount, composition and sources are available. This is especially the case for macrolitter hotspots like high frequented roadways that could generate large amount of macrolitter potentially reaching rivers. This dataset provides macrolitter amount and composition over one year from a retention pond collecting stormwater and carried macrolitter from a 800 m portion of a highly frequented roadway (around 90,000 vehicles per day).

View Article and Find Full Text PDF

Many researches mention the need to identify the land-based sources of riverine macrolitter but few field data on litter amount, composition and sources are available in the scientific literature. Describing macrolitter hotspot dynamics would actually allow a better estimation of fluxes in the receiving environments and a better identification of the more appropriate mitigation strategies. This study provides new insights in roadway macrolitter production rates, typologies and input sources (i.

View Article and Find Full Text PDF

Small urban rivers are thought to be major sources of riverine litter, especially macroplastics, into the ocean. In well-developed countries, waste management infrastructures and recovery systems are sometimes implemented to prevent their emission into the sea meeting environmental and economic goals. The Huveaune River in Marseille, South of France, is a typical case study showing a non-negligible and uncontrolled leakage of riverine litter remains, despite all recovery systems implemented.

View Article and Find Full Text PDF

Studies on the influence of hydrodynamic conditions on anthropogenic microfiber (MF) and microplastic (MP) distributions in freshwater environments are sparse. In this study, we evaluated the influence of urbanisation gradient on the spatial variability of MFs and MPs. Temporal variability was also assessed by comparing the concentrations and fluxes of MFs and MPs under low flow conditions with those during the January-February 2018 flood event.

View Article and Find Full Text PDF