Publications by authors named "Gaspar Pena-Munzenmayer"

Slc4a genes encode various types of transporters, including Na-HCO cotransporters, Cl/HCO exchangers, or Na-driven Cl/HCO exchangers. Previous research has revealed that Slc4a9 (Ae4) functions as a Cl/HCO exchanger, which can be driven by either Na or K, prompting investigation into whether other Slc4a members facilitate cation-dependent anion transport. In the present study, we show that either Na or K drive Cl/HCO exchanger activity in cells overexpressing Slc4a8 or Slc4a10.

View Article and Find Full Text PDF

Ae4 transporters are critical for Cl uptake across the basolateral membrane of acinar cells in the submandibular gland (SMG). Although required for fluid secretion, little is known about the physiological regulation of Ae4. To investigate whether Ae4 is regulated by the cAMP-dependent signaling pathway, we measured Cl/HCO exchanger activity in SMG acinar cells from Ae2 mice, which only express Ae4, and found that the Ae4-mediated activity was increased in response to β-adrenergic receptor stimulation.

View Article and Find Full Text PDF

We develop a mathematical model of a salivary gland acinar cell with the objective of investigating the role of two [Formula: see text] exchangers from the solute carrier family 4 (Slc4), Ae2 (Slc4a2) and Ae4 (Slc4a9), in fluid secretion. Water transport in this type of cell is predominantly driven by [Formula: see text] movement. Here, a basolateral [Formula: see text] adenosine triphosphatase pump (NaK-ATPase) and a [Formula: see text]-[Formula: see text]-[Formula: see text] cotransporter (Nkcc1) are primarily responsible for concentrating the intracellular space with [Formula: see text] well above its equilibrium potential.

View Article and Find Full Text PDF

Ae4 (Slc4a9) belongs to the Slc4a family of Cl(-)/HCO3 (-) exchangers and Na(+)-HCO3 (-) cotransporters, but its ion transport cycle is poorly understood. In this study, we find that native Ae4 activity in mouse salivary gland acinar cells supports Na(+)-dependent Cl(-)/HCO3 (-) exchange that is comparable with that obtained upon heterologous expression of mouse Ae4 and human AE4 in CHO-K1 cells. Additionally, whole cell recordings and ion concentration measurements demonstrate that Na(+) is transported by Ae4 in the same direction as HCO3 (-) (and opposite to that of Cl(-)) and that ion transport is not associated with changes in membrane potential.

View Article and Find Full Text PDF

Transcellular Cl(-) movement across acinar cells is the rate-limiting step for salivary gland fluid secretion. Basolateral Nkcc1 Na(+)-K(+)-2Cl(-) cotransporters play a critical role in fluid secretion by promoting the intracellular accumulation of Cl(-) above its equilibrium potential. However, salivation is only partially abolished in the absence of Nkcc1 cotransporter activity, suggesting that another Cl(-) uptake pathway concentrates Cl(-) ions in acinar cells.

View Article and Find Full Text PDF

Activation of an apical Ca(2+)-activated Cl(-) channel (CaCC) triggers the secretion of saliva. It was previously demonstrated that CaCC-mediated Cl(-) current and Cl(-) efflux are absent in the acinar cells of systemic Tmem16A (Tmem16A Cl(-) channel) null mice, but salivation was not assessed in fully developed glands because Tmem16A null mice die within a few days after birth. To test the role of Tmem16A in adult salivary glands, we generated conditional knockout mice lacking Tmem16A in acinar cells (Tmem16A(-/-)).

View Article and Find Full Text PDF

TASK-2 (K2P5) was one of the earliest members of the K2P two-pore, four transmembrane domain K(+) channels to be identified. TASK-2 gating is controlled by changes in both extra- and intracellular pH through separate sensors: arginine 224 and lysine 245, located at the extra- and intracellular ends of transmembrane domain 4. TASK-2 is inhibited by a direct effect of CO2 and is regulated by and interacts with G protein subunits.

View Article and Find Full Text PDF

In the last 15 years, remarkable progress has been realized in identifying the genes that encode the ion-transporting proteins involved in exocrine gland function, including salivary glands. Among these proteins, Ca(2+)-dependent K(+) channels take part in key functions including membrane potential regulation, fluid movement and K(+) secretion in exocrine glands. Two K(+) channels have been identified in exocrine salivary glands: (1) a Ca(2+)-activated K(+) channel of intermediate single channel conductance encoded by the KCNN4 gene, and (2) a voltage- and Ca(2+)-dependent K(+) channel of large single channel conductance encoded by the KCNMA1 gene.

View Article and Find Full Text PDF

TASK-2 is a K2P K(+) channel considered as a candidate to mediate CO2 sensing in central chemosensory neurons in mouse. Neuroepithelial cells in zebrafish gills sense CO2 levels through an unidentified K2P K(+) channel. We have now obtained zfTASK-2 from zebrafish gill tissue that is 49 % identical to mTASK-2.

View Article and Find Full Text PDF

TASK-2 (K2P5.1) is a background K(+) channel opened by extra- or intracellular alkalinisation that plays a role in renal bicarbonate handling, central chemoreception and cell volume regulation. Here, we present results that suggest that TASK-2 is also modulated by Gβγ subunits of heterotrimeric G protein.

View Article and Find Full Text PDF

Excitatory synaptic transmission stimulates brain tissue glycolysis. This phenomenon is the signal detected in FDG-PET imaging and, through enhanced lactate production, is also thought to contribute to the fMRI signal. Using a method based on Förster resonance energy transfer in mouse astrocytes, we have recently observed that a small rise in extracellular K(+) can stimulate glycolysis by >300% within seconds.

View Article and Find Full Text PDF

TASK-2 (KCNK5 or K(2P)5.1) is a background K(+) channel that is opened by extracellular alkalinization and plays a role in renal bicarbonate reabsorption and central chemoreception. Here, we demonstrate that in addition to its regulation by extracellular protons (pH(o)) TASK-2 is gated open by intracellular alkalinization.

View Article and Find Full Text PDF

The Cl- channel ClC-2 is expressed in transporting epithelia and has been proposed as an alternative route for Cl- efflux that might compensate for the malfunction of CFTR in cystic fibrosis. There is controversy concerning the cellular and membrane location of ClC-2, particularly in intestinal tissue. The aim of this paper is to resolve this controversy by immunolocalization studies using tissues from ClC-2 knockout animals as control, ascertaining the sorting of ClC-2 in model epithelial cells and exploring the possible molecular signals involved in ClC-2 targeting.

View Article and Find Full Text PDF