Proc Natl Acad Sci U S A
September 2024
Prolyl-hydroxylation is an oxygen-dependent posttranslational modification (PTM) that is known to regulate fibril formation of collagenous proteins and modulate cellular expression of hypoxia-inducible factor (HIF) α subunits. However, our understanding of this important but relatively rare PTM has remained incomplete due to the lack of biophysical methodologies that can directly measure multiple prolyl-hydroxylation events within intrinsically disordered proteins. Here, we describe a real-time C-direct detection NMR-based assay for studying the hydroxylation of two evolutionarily conserved prolines (P402 and P564) simultaneously in the intrinsically disordered oxygen-dependent degradation domain of hypoxic-inducible factor 1α by exploiting the "proton-less" nature of prolines.
View Article and Find Full Text PDFProtein Expr Purif
December 2023
DiRAS3, also called ARHI, is a RAS (sub)family small GTPase protein that shares 50-60% sequence identity with H-, K-, and N-RAS, with substitutions in key conserved G-box motifs and a unique 34 amino acid extension at its N-terminus. Unlike the RAS proto-oncogenes, DiRAS3 exhibits tumor suppressor properties. DiRAS3 function has been studied through genetics and cell biology, but there has been a lack of understanding of the biochemical and biophysical properties of the protein, likely due to its instability and poor solubility.
View Article and Find Full Text PDFOrb-weaving spiders produce up to seven silk types, each with distinct biological roles, protein compositions, and mechanics. Pyriform (or piriform) silk is composed of pyriform spidroin 1 (PySp1) and is the fibrillar component of attachment discs that attach webs to substrates and to each other. Here, we characterize the 234-residue repeat unit (the "Py unit") from the core repetitive domain of PySp1.
View Article and Find Full Text PDFRal Guanine Nucleotide Dissociation Stimulator Like 1 (RGL1) is a RAS effector protein that activates Ral GTPase by stimulating nucleotide exchange. Most structures of RAS-effector complexes are for the HRAS isoform; relatively few KRAS-effector structures have been solved, even though KRAS mutations are more frequent in human cancers. We determined crystal structures of KRAS/RGL1-RAS-association (RA) domain complexes and characterized the interaction in solution using nuclear magnetic resonance spectroscopy, size-exclusion chromatography combined with multi-angle light scattering and biolayer interferometry.
View Article and Find Full Text PDFA unifying feature of the RAS superfamily is a conserved GTPase cycle by which these proteins transition between active and inactive states. We demonstrate that autophosphorylation of some GTPases is an intrinsic regulatory mechanism that reduces nucleotide hydrolysis and enhances nucleotide exchange, altering the on/off switch that forms the basis for their signaling functions. Using X-ray crystallography, nuclear magnetic resonance spectroscopy, binding assays, and molecular dynamics on autophosphorylated mutants of H-RAS and K-RAS, we show that phosphoryl transfer from GTP requires dynamic movement of the switch II region and that autophosphorylation promotes nucleotide exchange by opening the active site and extracting the stabilizing Mg.
View Article and Find Full Text PDFKRAS forms transient dimers and higher-order multimers (nanoclusters) on the plasma membrane, which drive MAPK signaling and cell proliferation. KRAS is a frequently mutated oncogene, and while it is well known that the most prevalent mutation, G12D, impairs GTP hydrolysis, thereby increasing KRAS activation, G12D has also been shown to enhance nanoclustering. Elucidating structures of dynamic KRAS assemblies on a membrane has been challenging, thus we have refined our NMR approach that uses nanodiscs to study KRAS associated with membranes.
View Article and Find Full Text PDFPolo-like kinase 1 (Plk1) is instrumental for mitotic entry and progression. Plk1 is activated by phosphorylation on a conserved residue Thr210 in its activation segment by the Aurora A kinase (AURKA), a reaction that critically requires the co-factor Bora phosphorylated by a CyclinA/B-Cdk1 kinase. Here we show that phospho-Bora is a direct activator of AURKA kinase activity.
View Article and Find Full Text PDFMutations in RAS oncogenes occur in ~ 30% of human cancers, with KRAS being the most frequently altered isoform. RAS proteins comprise a conserved GTPase domain and a C-terminal lipid-modified tail that is unique to each isoform. The GTPase domain is a 'switch' that regulates multiple signaling cascades that drive cell growth and proliferation when activated by binding GTP, and the signal is terminated by GTP hydrolysis.
View Article and Find Full Text PDFMembrane anchoring of farnesylated KRAS is critical for activation of RAF kinases, yet our understanding of how these proteins interact on the membrane is limited to isolated domains. The RAS-binding domain (RBD) and cysteine-rich domain (CRD) of RAF engage KRAS and the plasma membrane, unleashing the kinase domain from autoinhibition. Due to experimental challenges, structural insight into this tripartite KRAS:RBD-CRD:membrane complex has relied on molecular dynamics simulations.
View Article and Find Full Text PDFKRAS homo-dimerization has been implicated in the activation of RAF kinases, however, the mechanism and structural basis remain elusive. We developed a system to study KRAS dimerization on nanodiscs using paramagnetic relaxation enhancement (PRE) NMR spectroscopy, and determined distinct structures of membrane-anchored KRAS dimers in the active GTP- and inactive GDP-loaded states. Both dimerize through an α4-α5 interface, but the relative orientation of the protomers and their contacts differ substantially.
View Article and Find Full Text PDFElucidation of activation mechanisms governing protein fusions is essential for therapeutic development. MLL undergoes rearrangement with numerous partners, including a recurrent translocation fusing the epigenetic regulator to a cytoplasmic RAS effector, AF6/afadin. We show here that AF6 employs a non-canonical, evolutionarily conserved α-helix to bind RAS, unique to AF6 and the classical RASSF effectors.
View Article and Find Full Text PDFRAS-like protein expressed in many tissues 1 (RIT1) is a disease-associated RAS subfamily small guanosine triphosphatase (GTPase). Recent studies revealed that germ-line and somatic RIT1 mutations can cause Noonan syndrome (NS), and drive proliferation of lung adenocarcinomas, respectively, akin to RAS mutations in these diseases. However, the locations of these RIT1 mutations differ significantly from those found in RAS, and do not affect the three mutational "hot spots" of RAS.
View Article and Find Full Text PDFK-RAS4B (Kirsten rat sarcoma viral oncogene homolog 4B) is a prenylated, membrane-associated GTPase protein that is a critical switch for the propagation of growth factor signaling pathways to diverse effector proteins, including rapidly accelerated fibrosarcoma (RAF) kinases and RAS-related protein guanine nucleotide dissociation stimulator (RALGDS) proteins. Gain-of-function KRAS mutations occur frequently in human cancers and predict poor clinical outcome, whereas germ-line mutations are associated with developmental syndromes. However, it is not known how these mutations affect K-RAS association with biological membranes or whether this impacts signal transduction.
View Article and Find Full Text PDFOrai1 calcium channels in the plasma membrane are activated by stromal interaction molecule-1 (STIM1), an endoplasmic reticulum calcium sensor, to mediate store-operated calcium entry (SOCE). The cytosolic region of STIM1 contains a long putative coiled-coil (CC)1 segment and shorter CC2 and CC3 domains. Here we present solution nuclear magnetic resonance structures of a trypsin-resistant CC1-CC2 fragment in the apo and Orai1-bound states.
View Article and Find Full Text PDFRyanodine receptors (RyRs) are large tetrameric calcium (Ca(2+)) release channels found on the sarcoplasmic reticulum that respond to dihydropyridine receptor activity through a direct conformational interaction and/or indirect Ca(2+) sensitivity, propagating sarcoplasmic reticulum luminal Ca(2+) release in the process of excitation-contraction coupling. There are three human RyR subtypes, and several debilitating diseases are linked to heritable mutations in RyR1 and RyR2 including malignant hypothermia, central core disease, catecholaminergic polymorphic ventricular tachycardia (CPVT) and arrhythmogenic right ventricular dysplasia type 2 (ARVD2). Despite the recent appreciation that many disease-associated mutations within the N-terminal RyRABC domains (i.
View Article and Find Full Text PDFThe Ras superfamily of small GTPases is a large family of switch-like proteins that control diverse cellular functions, and their deregulation is associated with multiple disease processes. When bound to GTP they adopt a conformation that interacts with effector proteins, whereas the GDP-bound state is generally biologically inactive. GTPase activating proteins (GAPs) promote hydrolysis of GTP, thus impeding the biological activity of GTPases, whereas guanine nucleotide exchange factors (GEFs) promote exchange of GDP for GTP and activate GTPase proteins.
View Article and Find Full Text PDFForkhead box class O 3a (FOXO3a) is a transcription factor and tumor suppressor linked to longevity that determines cell fate through activating transcription of cell differentiation, survival, and apoptotic genes. Recruitment of the coactivator CBP/p300 is a crucial step in transcription, and we revealed that in addition to conserved region 3 (CR3) of FOXO3a, the C-terminal segment of CR2 (CR2C) binds CBP/p300 and contributes to transcriptional activity. CR2C and CR3 of FOXO3a interact with the KIX domain of CBP/p300 at both "MLL" and "c-Myb" binding sites simultaneously.
View Article and Find Full Text PDFImmunoglobulin (Ig)-like domains are found frequently on the surface of tailed double-stranded DNA bacteriophages, yet their functional role remains obscure. Here, we have investigated the structure and function of the C-terminal Ig-like domain of gpV (gpV(C)), the tail tube protein of phage λ. This domain has been predicted through sequence similarity to be a member of the bacterial Ig-like domain 2 (Big_2) family, which is composed of more than 1300 phage and bacterial sequences.
View Article and Find Full Text PDFSmall guanosine triphosphatases (GTPases) become activated when GDP is replaced by GTP at the highly conserved nucleotide binding site. This process is intrinsically very slow in most GTPases but is significantly accelerated by guanine nucleotide exchange factors (GEFs). Nucleotide exchange in small GTPases has been widely studied using spectroscopy with fluorescently tagged nucleotides.
View Article and Find Full Text PDFThe Ras family of small GTPases control diverse signaling pathways through a conserved "switch" mechanism, which is turned on by binding of GTP and turned off by GTP hydrolysis to GDP. Full understanding of GTPase switch functions requires reliable, quantitative assays for nucleotide binding and hydrolysis. Fluorescently labeled guanine nucleotides, such as 2'(3')-O-(N-methylanthraniloyl) (mant)-substituted GTP and GDP analogs, have been widely used to investigate the molecular properties of small GTPases, including Ras and Rho.
View Article and Find Full Text PDFBiochim Biophys Acta
January 2008
Mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) cause CF disease by altering the biosynthesis, maturation, folding and ion conductance of this protein. Our laboratory has focused on expression and structural analysis of the CFTR transmembrane (TM) domains using two-TM segments (i.e.
View Article and Find Full Text PDFWe describe a simple experimental approach for the rapid determination of protein global folds. This strategy utilizes site-directed spin labeling (SDSL) in combination with isotope enrichment to determine long-range distance restraints between amide protons and the unpaired electron of a nitroxide spin label using the paramagnetic effect on relaxation rates. The precision and accuracy of calculating a protein global fold from only paramagnetic effects have been demonstrated on barnase, a well-characterized protein.
View Article and Find Full Text PDFPhosphorylation of the cardiac specific amino-terminus of troponin I has been demonstrated to reduce the Ca2+ affinity of the cardiac troponin C regulatory site. Recombinant N-terminal cardiac troponin I proteins, cardiac troponin I(33-80), cardiac troponin I(1-80), cardiac troponin I(1-80)DD and cardiac troponin I(1-80)pp, phosphorylated by protein kinase A, were used to form stable binary complexes with recombinant cardiac troponin C. Cardiac troponin I(1-80)DD, having phosphorylated Ser residues mutated to Asp, provided a stable mimetic of the phosphorylated state.
View Article and Find Full Text PDFThe N-terminal domain of cardiac troponin I (cTnI) comprising residues 33-80 and lacking the cardiac-specific amino terminus forms a stable binary complex with the C-terminal domain of cardiac troponin C (cTnC) comprising residues 81-161. We have utilized heteronuclear multidimensional NMR to assign the backbone and side-chain resonances of Ca2+-saturated cTnC(81-161) both free and bound to cTnI(33-80). No significant differences were observed between secondary structural elements determined for free and cTnI(33-80)-bound cTnC(81-161).
View Article and Find Full Text PDF