Publications by authors named "Gaskins H"

Background: Accumulation of hydrophobic bile acids (BAs) is linked with cancer development. However, derivatives of deoxycholic acid (DCA) and lithocholic acid (LCA) produced via bacterial metabolism may mitigate the proinflammatory and cytotoxic effects of hydrophobic BAs. The impact of diet on secondary BA derivative production has not been determined.

View Article and Find Full Text PDF
Article Synopsis
  • The text highlights the complexity of the tissue microenvironment (TiME) and the challenges in understanding its organization over time and space.
  • It discusses recent advancements in engineering and data science that enable detailed study of TiME, although many innovations remain isolated without integration.
  • The review offers a comprehensive overview of various technologies and their applications, aiming to enhance understanding of TiME's role in diseases and development, while also emphasizing the importance of collaboration in research efforts.
View Article and Find Full Text PDF

The field of bile acid microbiology in the gastrointestinal tract is going through a current rebirth after a peak of activity in the late 1970s and early 1980s. This renewed activity is a result of many factors, including the discovery near the turn of the century that bile acids are potent signalling molecules and technological advances in next-generation sequencing, computation, culturomics, gnotobiology, and metabolomics. We describe the current state of the field with particular emphasis on questions that have remained unanswered for many decades in both bile acid synthesis by the host and metabolism by the gut microbiota.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most common and malignant primary brain tumor affecting adults and remains incurable. The mitochondrial coiled‑coil‑helix‑coiled‑coil‑helix domain‑containing protein 2 (CHCHD2) has been demonstrated to mediate mitochondrial respiration, nuclear gene expression and cell migration; however, evidence of this in GBM is lacking. In the present study, it was hypothesized that CHCHD2 may play a functional role in U87 GBM cells expressing the constitutively active epidermal growth factor receptor variant III (EGFRvIII).

View Article and Find Full Text PDF

Bile acids are detergents derived from cholesterol that function to solubilize dietary lipids, remove cholesterol from the body, and act as nutrient signaling molecules in numerous tissues with functions in the liver and gut being the best understood. Studies in the early 20th century established the structures of bile acids, and by mid-century, the application of gnotobiology to bile acids allowed differentiation of host-derived "primary" bile acids from "secondary" bile acids generated by host-associated microbiota. In 1960, radiolabeling studies in rodent models led to determination of the stereochemistry of the bile acid 7-dehydration reaction.

View Article and Find Full Text PDF

Introduction: Diet and decreased gut microbiome diversity has been associated with acute pancreatitis (AP) risk. However, differences in dietary intake, gut microbiome, and their impact on microbial end metabolites have not been studied in AP. We aimed to determine differences in (i) dietary intake (ii) gut microbiome diversity and sulfidogenic bacterial abundance, and (iii) serum short-chain fatty acid (SCFA) and hydrogen sulfide (H 2 S) concentrations in AP and control subjects.

View Article and Find Full Text PDF

Background: Among all racial/ethnic groups, people who identify as African American/Blacks have the second highest colorectal cancer (CRC) incidence in the USA. This disparity may exist because African American/Blacks, compared to other racial/ethnic groups, have a higher prevalence of risk factors for CRC, including obesity, low fiber consumption, and higher intakes of fat and animal protein. One unexplored, underlying mechanism of this relationship is the bile acid-gut microbiome axis.

View Article and Find Full Text PDF

Obesity is considered an independent risk factor for colorectal cancer (CRC). Altered nutrient metabolism, particularly changes to digestion and intestinal absorption, may play an important role in the development of CRC. Iron can promote the formation of tissue-damaging and immune-modulating reactive oxygen species.

View Article and Find Full Text PDF

The gut microbiome of vertebrates is capable of numerous biotransformations of bile acids, which are responsible for intestinal lipid digestion and function as key nutrient-signaling molecules. The human liver produces bile acids from cholesterol predominantly in the A/B- orientation in which the sterol rings are "kinked", as well as small quantities of A/B- oriented "flat" stereoisomers known as "primary allo-bile acids". While the complex multi-step bile acid 7α-dehydroxylation pathway has been well-studied for conversion of "kinked" primary bile acids such as cholic acid (CA) and chenodeoxycholic acid (CDCA) to deoxycholic acid (DCA) and lithocholic acid (LCA), respectively, the enzymatic basis for the formation of "flat" stereoisomers allo-deoxycholic acid (allo-DCA) and allo-lithocholic acid (allo-LCA) by Firmicutes has remained unsolved for three decades.

View Article and Find Full Text PDF

Background: Recent evidence implicates microbial sulfidogenesis as a potential trigger of colorectal cancer (CRC), highlighting the need for comprehensive knowledge of sulfur metabolism within the human gut. Microbial sulfidogenesis produces genotoxic hydrogen sulfide (HS) in the human colon using inorganic (sulfate) and organic (taurine/cysteine/methionine) substrates; however, the majority of studies have focused on sulfate reduction using dissimilatory sulfite reductases (Dsr).

Results: Here, we show that genes for microbial sulfur metabolism are more abundant and diverse than previously observed and are statistically associated with CRC.

View Article and Find Full Text PDF

Bile acids (BAs) facilitate nutrient digestion and absorption and act as signaling molecules in a number of metabolic and inflammatory pathways. Expansion of the BA pool and increased exposure to microbial BA metabolites has been associated with increased colorectal cancer (CRC) risk. It is well established that diet influences systemic BA concentrations and microbial BA metabolism.

View Article and Find Full Text PDF

Microglia activation and proliferation are hallmarks of many neurodegenerative disorders and may contribute to disease pathogenesis. Neurons actively regulate microglia survival and function, in part by secreting the microglia mitogen interleukin (IL)-34. Both IL-34 and colony stimulating factor (CSF)-1 bind colony stimulating factor receptor (CSFR)1 expressed on microglia.

View Article and Find Full Text PDF

Objectives: To determine the extent of agreement between a handheld ultrasound (US) attached to an android tablet and the reference method dual energy x-ray absorptiometry (DXA) for the measurement of adiposity.

Methods: A whole-body DXA scan and abdominal adipose tissue thickness measurements using a handheld US were obtained from 104 adults (63 females, 41 males). Body fat percent (BF%), total fat mass (kg), and trunk fat mass (kg) were obtained from DXA.

View Article and Find Full Text PDF

The COVID-19 pandemic has highlighted the inequitable access to resources, leading to a disproportionate burden of disease in vulnerable communities in the USA. However, these inequities in health outcomes are not limited to COVID-19. Approximately 18% of cancers are related to dietary behaviors and excess body weight.

View Article and Find Full Text PDF

Bile acids are detergent molecules that solubilize dietary lipids and lipid-soluble vitamins. Humans synthesize bile acids with α-orientation hydroxyl groups which can be biotransformed by gut microbiota to toxic, hydrophobic bile acids, such as deoxycholic acid (DCA). Gut microbiota can also convert hydroxyl groups from the α-orientation through an oxo-intermediate to the β-orientation, resulting in more hydrophilic, less toxic bile acids.

View Article and Find Full Text PDF
Article Synopsis
  • Berberine (BBR) is a plant-derived supplement that improves cholesterol levels and is known to affect gut bacteria but its specific impact on the gut microbiome is not fully understood.
  • *Research using germ-free mice with a specific gut bacteria setup showed that BBR leads to significant changes in bile acid levels and the functionality of bacterial communities, even though overall diversity of bacteria remained stable.
  • *Key findings included increased levels of deoxycholic acid and specific bacterial responses indicating BBR enhances functions like cell repair and metabolism among gut bacteria.
View Article and Find Full Text PDF

Background: Glioblastoma is the most common and deadly form of primary brain cancer, accounting for more than 13,000 new diagnoses annually in the USA alone. Microglia are the innate immune cells within the central nervous system, acting as a front-line defense against injuries and inflammation via a process that involves transformation from a quiescent to an activated phenotype. Crosstalk between GBM cells and microglia represents an important axis to consider in the development of tissue engineering platforms to examine pathophysiological processes underlying GBM progression and therapy.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is the third leading cause of cancer and second leading cause of cancer death in the United States. Recent evidence has linked a high fat and animal protein diet and microbial metabolism of host bile acids as environmental risk factors for CRC development. We hypothesize that the primary bile salt taurocholic acid (TCA) is a key, diet-controlled metabolite whose use by bacteria yields a carcinogen and tumor-promoter, respectively.

View Article and Find Full Text PDF
Article Synopsis
  • - Alaska Native (AN) people have the highest known rate of colorectal cancer (CRC) globally, while rural Africans (RA) have the lowest, suggesting that dietary differences may influence CRC risk through their effect on gut microbiota.
  • - A study compared the dietary habits and gut microbiota of healthy middle-aged volunteers from AN and RA, revealing that AN participants had higher fat and animal protein intake, lower fiber, and a distinct microbial composition linked to tumor-promoting metabolites.
  • - Results showed that AN individuals had adenomatous polyps and lower butyrate levels, a tumor-suppressive metabolite, alongside higher levels of deoxycholic acid, a tumor-promoting substance; thus, the differing metabolite profiles
View Article and Find Full Text PDF

The gut microbiome of primates, including humans, is reported to closely follow host evolutionary history, with gut microbiome composition being specific to the genetic background of its primate host. However, the comparative models used to date have mainly included a limited set of closely related primates. To further understand the forces that shape the primate gut microbiome, with reference to human populations, we expanded the comparative analysis of variation among gut microbiome compositions and their primate hosts, including 9 different primate species and 4 human groups characterized by a diverse set of subsistence patterns ( = 448 samples).

View Article and Find Full Text PDF

The formation of secondary bile acids by gut microbes is a current topic of considerable biomedical interest. However, a detailed understanding of the biology of anaerobic bacteria in the genus that are capable of generating secondary bile acids is lacking. We therefore sought to determine the transcriptional responses of two prominent secondary bile acid producing bacteria, and to bile salts () and the cecal environment of gnotobiotic mice.

View Article and Find Full Text PDF

Objective: In this consensus statement, an international panel of experts deliver their opinions on key questions regarding the contribution of the human microbiome to carcinogenesis.

Design: International experts in oncology and/or microbiome research were approached by personal communication to form a panel. A structured, iterative, methodology based around a 1-day roundtable discussion was employed to derive expert consensus on key questions in microbiome-oncology research.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most common, aggressive, and deadly form of adult brain cancer, and is associated with a short survival rate (median 12-15 months, 5+ year less than 5%). The complex tumor microenvironment includes matrix transitions at the tumor margin, such as gradations in hyaluronic acid (HA). In addition, metabolic stress induced by decreased oxygen content across the tumor may contribute to tumor progression.

View Article and Find Full Text PDF

Regions of hypoxia are common in solid tumors and are associated with enhanced malignancy, metastasis, and chemo/radio resistance. Real-time hypoxic cellular experimentation is challenging due to the constant need for oxygen control. Most microfluidic platforms developed thus far for hypoxic cell studies are burdened by complex design parameters and are difficult to use for uninitiated investigators.

View Article and Find Full Text PDF