Intercalation is a promising technique to modify the structural and electronic properties of 2D materials on the wafer scale for future electronic device applications. Yet, few reports to date demonstrate 2D intercalation as a viable technique on this scale. Spurred by recent demonstrations of mm-scale sensors, we use hydrogen intercalated quasi-freestanding bilayer graphene (hQBG) grown on 6H-SiC(0001), to understand the electronic properties of a large-area (16 mm) device.
View Article and Find Full Text PDFChemiresistive graphene sensors are promising for chemical sensing applications due to their simple device structure, high sensitivity, potential for miniaturization, low-cost, and fast response. In this work, we investigate the effect of (1) ZnO nanoparticle functionalization and (2) engineered defects onto graphene sensing channel on device resistance and low frequency electrical noise. The engineered defects of interest include 2D patterns of squares, stars, and circles and 1D patterns of slots parallel and transverse to the applied electric potential.
View Article and Find Full Text PDFPoint defects in SiC are an attractive platform for quantum information and sensing applications because they provide relatively long spin coherence times, optical spin initialization, and spin-dependent fluorescence readout in a fabrication-friendly semiconductor. The ability to precisely place these defects at the optimal location in a host material with nano-scale accuracy is desirable for integration of these quantum systems with traditional electronic and photonic structures. Here, we demonstrate the precise spatial patterning of arrays of silicon vacancy ([Formula: see text]) emitters in an epitaxial 4H-SiC (0001) layer through mask-less focused ion beam implantation of Li.
View Article and Find Full Text PDFControl of atomic-scale interfaces between materials with distinct electronic structures is crucial for the design and fabrication of most electronic devices. In the case of two-dimensional materials, disparate electronic structures can be realized even within a single uniform sheet, merely by locally applying different vertical gate voltages. Here, we utilize the inherently nano-structured single layer and bilayer graphene on silicon carbide to investigate lateral electronic structure variations in an adjacent single layer of tungsten disulfide (WS).
View Article and Find Full Text PDFWe have studied the ambient air oxidation of chemical vapor deposition (CVD) grown monolayers of the semiconducting transition metal dichalcogenide (S-TMD) WS using optical microscopy, laser scanning confocal microscopy (LSCM), photoluminescence (PL) spectroscopy, and atomic force microscopy (AFM). Monolayer WS exposed to ambient conditions in the presence of light (typical laboratory ambient light for weeks or typical PL spectroscopy map) exhibits damage due to oxidation which can be detected with the LSCM and AFM, though may not be evident in conventional optical microscopy due to poorer contrast and resolution. Additionally, this oxidation was not random and was correlated with "high-symmetry" high intensity edges and red-shifted areas in the PL spectroscopy map, areas thought to contain a higher concentration of sulfur vacancies.
View Article and Find Full Text PDFMetal films deposited on graphene are known to influence its electronic properties, but little is known about graphene's interactions with very low work function rare earth metals. Here we report on the work functions of a wide range of metals deposited on n-type epitaxial graphene (EG) as measured by Kelvin Probe Force Microscopy (KPFM). We compare the behaviors of rare earth metals (Pr, Eu, Er, Yb, and Y) with commonly used noble metals (Cr, Cu, Rh, Ni, Au, and Pt).
View Article and Find Full Text PDFThe transparency of two-dimensional (2D) materials to intermolecular interactions of crystalline materials has been an unresolved topic. Here we report that remote atomic interaction through 2D materials is governed by the binding nature, that is, the polarity of atomic bonds, both in the underlying substrates and in 2D material interlayers. Although the potential field from covalent-bonded materials is screened by a monolayer of graphene, that from ionic-bonded materials is strong enough to penetrate through a few layers of graphene.
View Article and Find Full Text PDFMany studies have reported genetic interventions that have an effect on mouse life span; however, it is crucial to discriminate between manipulations of aging and aging-independent causes of life extension. Here, we used the Gompertz equation to determine whether previously reported aging-related mouse genes statistically affect the demographic rate of aging. Of 30 genetic manipulations previously reported to extend life span, for only two we found evidence of retarding demographic aging: and Of 24 genetic manipulations reported to shorten life span and induce premature aging features, we found evidence of five accelerating demographic aging: , , -β, , and Overall, our reassessment found that only 15% of the genetic manipulations analyzed significantly affected the demographic rate of aging as predicted, suggesting that a relatively small proportion of interventions affecting longevity do so by regulating the rate of aging.
View Article and Find Full Text PDFSince its discovery, graphene has held great promise as a two-dimensional (2D) metal with massless carriers and, thus, extremely high-mobility that is due to the character of the band structure that results in the so-called Dirac cone for the ideal, perfectly ordered crystal structure. This promise has led to only limited electronic device applications due to the lack of an energy gap which prevents the formation of conventional device geometries. Thus, several schemes for inducing a semiconductor band gap in graphene have been explored.
View Article and Find Full Text PDFUsing square wave voltammetry, we show an increase in the electrochemical detection of trinitrotoluene (TNT) with a working electrode constructed from plasma modified graphene on a SiC surface vs. unmodified graphene. The graphene surface was chemically modified using electron beam generated plasmas produced in oxygen or nitrogen containing backgrounds to introduce oxygen or nitrogen moieties.
View Article and Find Full Text PDFReports of metallic behavior in two-dimensional (2D) systems such as high mobility metal-oxide field effect transistors, insulating oxide interfaces, graphene, and MoS2 have challenged the well-known prediction of Abrahams, et al. that all 2D systems must be insulating. The existence of a metallic state for such a wide range of 2D systems thus reveals a wide gap in our understanding of 2D transport that has become more important as research in 2D systems expands.
View Article and Find Full Text PDFLight absorption in graphene causes a large change in electron temperature due to the low electronic heat capacity and weak electron-phonon coupling. This property makes graphene a very attractive material for hot-electron bolometers in the terahertz frequency range. Unfortunately, the weak variation of electrical resistance with temperature results in limited responsivity for absorbed power.
View Article and Find Full Text PDFWe report here a new type of plasmon resonance that occurs when graphene is connected to a metal. These new plasmon modes offer the potential to incorporate a tunable plasmonic channel into a device with electrical contacts, a critical step toward practical graphene terahertz optoelectronics. Through theory and experiments, we demonstrate, for example, anomalously high resonant absorption or transmission when subwavelength graphene-filled apertures are introduced into an otherwise conductive layer.
View Article and Find Full Text PDFThis article addresses the much debated question whether the degree of hydrophobicity of single-layer graphene (1LG) is different from that of double-layer graphene (2LG). Knowledge of the water affinity of graphene and its spatial variations is critically important as it can affect the graphene properties as well as the performance of graphene devices exposed to humidity. By employing chemical force microscopy with a probe rendered hydrophobic by functionalization with octadecyltrichlorosilane (OTS), the adhesion force between the probe and epitaxial graphene on SiC has been measured in deionized water.
View Article and Find Full Text PDFWe report a large area terahertz detector utilizing a tunable plasmonic resonance in subwavelength graphene microribbons on SiC(0001) to increase the absorption efficiency. By tailoring the orientation of the graphene ribbons with respect to an array of subwavelength bimetallic electrodes, we achieve a condition in which the plasmonic mode can be efficiently excited by an incident wave polarized perpendicular to the electrode array, while the resulting photothermal voltage can be observed between the outermost electrodes.
View Article and Find Full Text PDFJ Phys Condens Matter
April 2015
Energy relaxation of hot Dirac fermions in bilayer epitaxial graphene is experimentally investigated by magnetotransport measurements on Shubnikov-de Haas oscillations and weak localization. The hot-electron energy loss rate is found to follow the predicted Bloch-Grüneisen power-law behaviour of T(4) at carrier temperatures from 1.4 K up to ∼100 K, due to electron-acoustic phonon interactions with a deformation potential coupling constant of 22 eV.
View Article and Find Full Text PDFTerahertz radiation has uses in applications ranging from security to medicine. However, sensitive room-temperature detection of terahertz radiation is notoriously difficult. The hot-electron photothermoelectric effect in graphene is a promising detection mechanism; photoexcited carriers rapidly thermalize due to strong electron-electron interactions, but lose energy to the lattice more slowly.
View Article and Find Full Text PDFAtomic-layer 2D crystals have unique properties that can be significantly modified through interaction with an underlying support. For epitaxial graphene on SiC(0001), the interface strongly influences the electronic properties of the overlaying graphene. We demonstrate a novel combination of x-ray scattering and spectroscopy for studying the complexities of such a buried interface structure.
View Article and Find Full Text PDFThe remarkable electronic properties of graphene strongly depend on the thickness and geometry of graphene stacks. This wide range of electronic tunability is of fundamental interest and has many applications in newly proposed devices. Using the mid-infrared, magneto-optical Kerr effect, we detect and identify over 18 interband cyclotron resonances (CR) that are associated with ABA and ABC stacked multilayers as well as monolayers that coexist in graphene that is epitaxially grown on 4H-SiC.
View Article and Find Full Text PDFWe report on the polarization selection rules of inter-Landau-level transitions using reflection-type optical Hall effect measurements from 600 to 4000 cm(-1) on epitaxial graphene grown by thermal decomposition of silicon carbide. We observe symmetric and antisymmetric signatures in our data due to polarization preserving and polarization mixing inter-Landau-level transitions, respectively. From field-dependent measurements, we identify that transitions in coupled graphene monolayers are governed by polarization mixing selection rules, whereas transitions in decoupled graphene monolayers are governed by polarization preserving selection rules.
View Article and Find Full Text PDFWe demonstrate the first successful growth of large-area (200 × 200 μm(2)) bilayer, Bernal stacked, epitaxial graphene (EG) on atomically flat, 4H-SiC (0001) step-free mesas (SFMs) . The use of SFMs for the growth of graphene resulted in the complete elimination of surface step-bunching typically found after EG growth on conventional nominally on-axis SiC (0001) substrates. As a result heights of EG surface features are reduced by at least a factor of 50 from the heights found on conventional substrates.
View Article and Find Full Text PDFThe virus-resistant, transgenic commercial papaya Rainbow and SunUp (Carica papaya L.) have been consumed locally in Hawaii and elsewhere in the mainland United States and Canada since their release to planters in Hawaii in 1998. These papaya are derived from transgenic papaya line 55-1 and carry the coat protein (CP) gene of papaya ringspot virus (PRSV).
View Article and Find Full Text PDFThe initial stages of epitaxial graphene growth were studied by characterization of graphene formed in localized areas on C-face 6H-SiC substrates. The graphene areas were determined to lie below the level of the surrounding substrate and showed different morphologies based on size. Employing electron channeling contrast imaging, the presence of threading screw dislocations was indicated near the centers of each of these areas.
View Article and Find Full Text PDFWe report the first observation of linear magnetoresistance (LMR) in multilayer epitaxial graphene grown on SiC. We show that multilayer epitaxial graphene exhibits large LMR from 2.2 K up to room temperature and that it can be best explained by a purely quantum mechanical model.
View Article and Find Full Text PDF