Publications by authors named "Gaschet J"

Unlabelled: Although peptide radionuclide therapy (PRRT) using a somatostatin analog (SSA) radiolabeled with a beta- emitter: [Lu]Lu-DOTATATE has shown a good clinical efficacy in neuroendocrine tumors (NETs), most of the patients only achieved tumoral stabilization and rare but severe long-term hematological toxicities have been reported. One of the promising options to improve PRRT is targeted alpha therapy. It is therefore essential to propose animal models that can mimic systemic spread disease, especially microscopic disease such as early stage of NET liver metastases to explore targeted alpha therapy.

View Article and Find Full Text PDF
Article Synopsis
  • In acute myeloid leukaemia (AML), interleukin-6 (IL-6) is linked to chemotherapy resistance and worse patient outcomes, prompting researchers to explore tocilizumab, an anti-IL-6 receptor monoclonal antibody, as a potential treatment in combination with standard chemotherapy.
  • A phase 1 trial at Nantes University Hospital tested three escalating doses of tocilizumab in adults with newly diagnosed or relapsed AML, aiming to determine the maximum tolerated dose (MTD) while monitoring safety and treatment responses.
  • Of the 12 patients treated, no significant toxicities related to tocilizumab were observed, nine out of ten evaluable patients had a positive response to the treatment, indicating
View Article and Find Full Text PDF

Although the concept of theranostics is neither new nor exclusive to nuclear medicine, it is a particularly promising approach for the future of nuclear oncology. This approach is based on the use of molecules targeting specific biomarkers in the tumour or its microenvironment, associated with optimal radionuclides which, depending on their emission properties, allow the combination of diagnosis by molecular imaging and targeted radionuclide therapy (TRT). Copper-64 has suitable decay properties (both β and β- decays) for PET imaging and potentially for TRT, making it both an imaging and therapy agent.

View Article and Find Full Text PDF

Despite the growing interest in radioiodine and At-labeled radiopharmaceuticals, the search for radiolabeling reactions has been somewhat neglected, resulting in a limited number of available radiosynthetic strategies. Herein we report a comparative study of nucleophilic I and At-labeling of aryliodonium ylides. Whereas radioiodination efficiency was low, At-labeling performed efficiently on a broad scope of precursors.

View Article and Find Full Text PDF

Purpose: The tumor microenvironment (TME) can severely impair immunotherapy efficacy by repressing the immune system. In a multiple myeloma (MM) murine model, we investigated the impact of targeted alpha particle therapy (TAT) on the immune TME. TAT was combined with an adoptive cell transfer of CD8 T cells (ACT), and the mechanisms of action of this combination were assessed at the tumor site.

View Article and Find Full Text PDF

The optimization of adoptive transfer approaches of anti-tumor T cells requires both the functional improvement of the injected T cells and the modulation of the tumor microenvironment, favoring the recruitment of these T cells and their activation. We have recently shown the therapeutic benefit of two approaches tested individually in a melanoma model wich were on one hand the adoptive transfer of specific T cells deficient for the expression of the inhibitory receptor PD-1, and on the other hand PD-L1 targeted alpha therapy (TAT). In this study, we sought to investigate the efficacy of these two therapies combined, compared to each monotherapy, in order to evaluate the synergy between these two approaches, in the same melanoma model.

View Article and Find Full Text PDF

Easy access to radioiodinated and At-labelled bio(macro)molecules is essential to develop new strategies in nuclear imaging and targeted radionuclide therapy of cancers. Yet, the labelling of complex molecules with heavy radiohalogens is often poorly effective due to the multiple steps and intermediate purifications needed. Herein, we investigate the potential of arylboron chemistry as an alternative approach for the late stage labelling of antibodies.

View Article and Find Full Text PDF

PD-L1 (programmed death-ligand 1, B7-H1, CD274), the ligand for PD-1 inhibitory receptor, is expressed on various tumors, and its expression is correlated with a poor prognosis in melanoma. Anti-PD-L1 mAbs have been developed along with anti-CTLA-4 and anti-PD-1 antibodies for immune checkpoint inhibitor (ICI) therapy, and anti-PD-1 mAbs are now used as first line treatment in melanoma. However, many patients do not respond to ICI therapies, and therefore new treatment alternatives should be developed.

View Article and Find Full Text PDF
Article Synopsis
  • * It focuses specifically on two cytokines: Fms-like tyrosine kinase 3 ligand (FL) and interleukin-6 (IL-6), measuring their levels during initial intensive treatment.
  • * A new risk stratification model is proposed based on the cytokine levels, identifying three risk groups (high, intermediate, favorable) that could improve predictions of survival compared to existing classifications.
View Article and Find Full Text PDF

Despite therapeutic progress in recent years with the introduction of targeted therapies (daratumumab, elotuzumab), multiple myeloma remains an incurable cancer. The question is therefore to investigate the potential of targeted alpha therapy, combining an anti-CD138 antibody with astatine-211, to destroy the residual cells that cause relapses. A preclinical syngeneic mouse model, consisting of IV injection of 1 million of 5T33 cells in a KaLwRij C57/BL6 mouse, was treated 10 days later with an anti-mCD138 antibody, called 9E7.

View Article and Find Full Text PDF

The impressive development of cancer immunotherapy in the last few years originates from a more precise understanding of control mechanisms in the immune system leading to the discovery of new targets and new therapeutic tools. Since different stages of disease progression elicit different local and systemic inflammatory responses, the ability to longitudinally interrogate the migration and expansion of immune cells throughout the whole body will greatly facilitate disease characterization and guide selection of appropriate treatment regiments. While using radiolabeled white blood cells to detect inflammatory lesions has been a classical nuclear medicine technique for years, new non-invasive methods for monitoring the distribution and migration of biologically active cells in living organisms have emerged.

View Article and Find Full Text PDF

Background: Genome editing offers unique perspectives for optimizing the functional properties of T cells for adoptive cell transfer purposes. So far, editing has been successfully tested mainly in chimeric antigen receptor T (CAR-T) cells and human primary T cells. Nonetheless, for patients with solid tumors, the adoptive transfer of effector memory T cells specific for tumor antigens remains a relevant option, and the use of high avidity T cells deficient for programmed cell death-1 (PD-1) expression is susceptible to improve the therapeutic benefit of these treatments.

View Article and Find Full Text PDF

Objective: This study was designed to assess the impact on outcomes of early soluble Fms-like tyrosine kinase 3 ligand concentrations (sFLc) in patients receiving an allogeneic hematopoietic stem cell transplantation (allo-HSCT) for acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML).

Methods: This was a prospective monocentric study including all allo-HSCT patients included in the previous FLAM/FLAL study (Peterlin et al., 2019).

View Article and Find Full Text PDF

Alpha-radioimmunotherapy (α-RIT) is a targeted anti-tumor therapy using usually a monoclonal antibody specific for a tumor antigen that is coupled to an α-particle emitter. α-emitters represent an ideal tool to eradicate disseminated tumors or metastases. Recent data demonstrate that ionizing radiation in addition to its direct cytotoxic ability can also induce an efficient anti-tumor immunity.

View Article and Find Full Text PDF

We isolated 11 antibodies specific for canine CD138 (cCD138) to validate the interest of CD138 antigen targeting in dogs with spontaneous mammary carcinoma. The affinity of the monoclonal antibodies in the nanomolar range is suitable for immunohistochemistry and nuclear medicine applications. Four distinct epitopes were recognized on cCD138 by this panel of antibodies.

View Article and Find Full Text PDF

Acute leukemias are characterized by accumulation of immature cells (blasts) and reduced production of healthy hematopoietic elements. According to the lineage origin, two major leukemias can be distinguished: acute myeloid leukemia (AML) and acute lymphoid leukemia (ALL). Although the survival rate for pediatric ALL is close to 90%, half of the young adults with AML or ALL and approximately 90% of older patients with AML or ALL still die of their disease, raising the need for innovative therapeutic approaches.

View Article and Find Full Text PDF

Background: Prognosis of patients with relapsed or refractory acute lymphoblastic leukaemia is poor and new treatments are needed. We aimed to assess the feasibility, tolerability, dosimetry, and efficacy of yttrium-90-labelled anti-CD22 epratuzumab tetraxetan ((90)Y-DOTA-epratuzumab) radioimmunotherapy in refractory or relapsed CD22-positive B-cell acute lymphoblastic leukaemia in a standard 3 + 3 phase 1 study.

Methods: Adults (≥18 years) with relapsed or refractory B-cell acute lymphoblastic leukaemia (with CD22 expression on at least 70% of blast cells) were enrolled at six centres in France.

View Article and Find Full Text PDF

Objectives: Radioimmunotherapy (RIT) has emerged as a potential treatment option for multiple myeloma (MM). In humans, a dosimetry study recently showed the relevance of RIT using an antibody targeting the CD138 antigen. The therapeutic efficacy of RIT using an anti-CD138 antibody coupled to (213)Bi, an α-emitter, was also demonstrated in a preclinical MM model.

View Article and Find Full Text PDF

Objectives: Radiation emitted by the radionuclides in radioimmunotherapy (RIT) approaches induce direct killing of the targeted cells as well as indirect killing through the bystander effect. Our research group is dedicated to the development of α-RIT, i.e.

View Article and Find Full Text PDF

Ionizing radiation induces direct and indirect killing of cancer cells and for long has been considered as immunosuppressive. However, this concept has evolved over the past few years with the demonstration that irradiation can increase tumor immunogenicity and can actually favor the implementation of an immune response against tumor cells. Adoptive T-cell transfer (ACT) is also used to treat cancer and several studies have shown that the efficacy of this immunotherapy was enhanced when combined with radiation therapy.

View Article and Find Full Text PDF

Radioimmunotherapy aims to deliver radiation directly to cancer cells by means of a tumor specific vector coupled to a radionuclide. Alpha radionuclides are very potent agents to treat disseminated cancer and metastasis. We have demonstrated that α radiation can also induce immunogenic cell death, reinforcing interest in their clinical development.

View Article and Find Full Text PDF

Radioimmunotherapy (RIT) has been developed for more than 30 years. Two products targeting the CD20 antigen are approved in the treatment of non-Hodgkin B-cell lymphoma (NHBL): iodine 131-tositumomab and yttrium 90-ibritumomab tiuxetan. RIT can be integrated in clinical practice for the treatment of patients with relapsed or refractory follicular lymphoma (FL) or as consolidation after induction chemotherapy.

View Article and Find Full Text PDF

Radioimmunotherapy (RIT) is a therapeutic modality that allows delivering of ionizing radiation directly to targeted cancer cells. Conventional RIT uses β-emitting radioisotopes, but recently, a growing interest has emerged for the clinical development of α particles. α emitters are ideal for killing isolated or small clusters of tumor cells, thanks to their specific characteristics (high linear energy transfer and short path in the tissue), and their effect is less dependent on dose rate, tissue oxygenation, or cell cycle status than γ and X rays.

View Article and Find Full Text PDF