The properties of intracranial aneurysms (IAs) walls are known to be driven by the underlying hemodynamics adjacent to the IA sac. Different pathways exist explaining the connections between hemodynamics and local tissue properties. The emergence of such theories is essential if one wishes to compute the mechanical response of a patient-specific IA wall and predict its rupture.
View Article and Find Full Text PDFNumerical simulations have been extensively used in the past two decades for the study of intracranial aneurysms (IAs), a dangerous disease that occurs in the arteries that reach the brain and affect overall 3.2% of a population without comorbidity with up to 60% mortality rate, in case of rupture. The majority of those studies, though, assumed a rigid-wall model to simulate the blood flow.
View Article and Find Full Text PDFWhen simulating blood flow in intracranial aneurysms (IAs), the Newtonian model seems to be ubiquitous. However, analyzing the results from the few studies on this subject, the doubt remains on whether it is necessary to use non-Newtonian models in computational fluid dynamics (CFD) simulations of cerebral vascular flows. The objective of this study is to investigate whether different rheology models would influence the hemodynamic parameters related to the wall shear stress (WSS) for ruptured and unruptured IA cases, especially because ruptured aneurysms normally have morphological features, such as lobular regions and blebs, that could trigger non-Newtonian phenomena in the blood flow due to low shear rates.
View Article and Find Full Text PDFStenting has become an important adjunctive tool for assisting coil embolization in complex-shaped intracranial aneurysms. However, as a secondary effect, stent deployment has been related to both immediate and delayed remodeling of the local vasculature. Recent studies have demonstrated that this phenomenon may assume different roles depending on the treatment stage.
View Article and Find Full Text PDFDysregulation of gene expression is a frequent occurrence in oral squamous cell carcinoma (OSCC). However, accumulating evidence suggests that in contrast to genetics, epigenetic modifications consisting of aberrant DNA methylation, histone modifications and altered expression of miRNAs induce OSCC tumorigenesis and perhaps play a more central role in the evolution and progression of this disease. The unifying theme among these three epigenetic mechanisms remains the same, which is aberrant regulation of gene expression.
View Article and Find Full Text PDFWorldwide oral squamous cell carcinoma (OSCC) accounts for more than 100,000 deaths each year. Chronic inflammation constitutes one of the key risk factors for OSCC. Accumulating evidence suggests that aberrant DNA methylation may contribute to OSCC tumorigenesis.
View Article and Find Full Text PDFBull Soc Chim Biol (Paris)
July 1966