The carrier ampholytes-based (CA-based) isoelectric focusing (IEF) experiment evolved from Svensson's closed system IEF (constant spatial current density, absence of convective mixing, counter-balancing electrophoretic and diffusive fluxes yielding a steady state pH gradient) to the contemporary open system IEF (absence of convective mixing, large cross-sectional area electrode vessels, lack of counter-balancing electrophoretic- and diffusive fluxes leading to transient pH gradients). Open system IEF currently is described by a two-stage model: In the first stage, a rapid IEF process forms the pH gradient which, in the second stage, is slowly degraded by isotachophoretic processes that move the most acidic and most basic CAs into the electrode vessels. An analysis of the effective mobilities and the effective mobility to conductivity ratios of the anolyte, catholyte, and the CAs indicates that in open system IEF experiments a single process, transient bidirectional isotachophoresis (tbdITP) operates from the moment current is turned on until it is turned off.
View Article and Find Full Text PDFIn 1961, Svensson described isoelectric focusing (IEF), the separation of ampholytic compounds in a stationary, natural pH gradient that was formed by passing current through a sucrose density gradient-stabilized ampholyte mixture in a constant cross-section apparatus, free of mixing. Stable pH gradients were formed as the electrophoretic transport built up a series of isoelectric ampholyte zones-the concentration of which decreased with their distance from the electrodes-and a diffusive flux which balanced the generating electrophoretic flux. When polyacrylamide gel replaced the sucrose density gradient as the stabilizing medium, the spatial and temporal stability of Svensson's pH gradient became lost, igniting a search for the explanation and mitigation of the loss.
View Article and Find Full Text PDFIn modern isoelectric focusing (IEF) systems, where (i) convective mixing is prevented by gels or small cross-sectional area separation channels, (ii) current densities vary spatially due to the presence of electrode vessels with much larger cross-sectional areas than those of the gels or separation channels, and (iii) electrophoretic and diffusive fluxes do not balance each other, stationary, steady-state pH gradients cannot form (open-system IEF). Open-system IEF is currently described as a two-stage process: A rapid IEF process forms the pH gradient from the carrier ampholytes (CAs) in the first stage, then isotachophoretic processes degrade the pH gradient in the second stage as the extreme pI CAs are moved into the electrode vessels where they become diluted. Based on the ratios of the local effective mobilities and the local conductivities ( / values) of the anolyte, catholyte, and the CAs, we pointed out in the preceding paper (Vigh G, Gas B, Electrophoresis 2023, 44, 675-88) that in open-system IEF, a single process, transient, bidirectional isotachophoresis (tbdITP) operates from the moment current is turned on.
View Article and Find Full Text PDFObjective: Course content was designed and the learning outcomes assessed for an online ergonomics course for surgical residents. This course could fulfill an optional Surgical Council on Resident Education (SCORE) curriculum on Surgical Ergonomics.
Design: The online course included five 5-minute modules within the residents' learning system, each ending with an ungraded knowledge question, and a final 5-question multiple-choice retention quiz that allowed infinite attempts.
Simul 6 is a 1D dynamic simulator of electromigration based on the mathematical model of electromigration in free solutions. The model consists of continuity equations for the movement of electrolytes in a separation channel, acid-base equilibria of weak electrolytes, and the electroneutrality condition. It accounts for any number of multivalent electrolytes or ampholytes and provides a complete picture about dynamics of electromigration and diffusion in the separation channel.
View Article and Find Full Text PDFFor naive robots to become truly autonomous, they need a means of developing their perceptive capabilities instead of relying on hand crafted models. The sensorimotor contingency theory asserts that such a way resides in learning invariants of the sensorimotor flow. We propose a formal framework inspired by this theory for the description of sensorimotor experiences of a naive agent, extending previous related works.
View Article and Find Full Text PDFElectrophoresis
April 2021
The structure of the double layer on the boundary between solid and liquid phases is described by various models, of which the Stern-Gouy-Chapman model is still commonly accepted. Generally, the solid phase is charged, which also causes the distribution of the electric charge in the adjacent diffuse layer in the liquid phase. We propose a new mathematical model of electromigration considering the high deviation from electroneutrality in the diffuse layer of the double layer when the liquid phase is composed of solution of weak multivalent electrolytes of any valence and of any complexity.
View Article and Find Full Text PDFWe present a new theoretical approach for calculating changes in the physico-chemical properties of BGEs for measurements by CZE due to the electrolysis in electrode vials (vessels). Electrolysis is an inevitable phenomenon in any measurement in CZE. Water electrolysis, which occurs in most measurements, can significantly alter the composition of the BGE in electrode vials and in the separation capillary and has a negative influence on the robustness and quality of separations.
View Article and Find Full Text PDFFourteen low molecular mass UV absorbing ampholytes containing 1 or 2 weakly acidic and 1 or 2 weakly basic functional groups that best satisfy Rilbe's requirement for being good carrier ampholytes (ΔpK = pKa - pKa < 2) were selected from a large group of commercially readily available ampholytes in a computational study using two software packages (ChemSketch and SPARC). Their electrophoretic mobilities were measured in 10 mM ionic strength BGEs covering the 2 < pH < 12 range. Using our Debye-Hückel and Onsager-Fuoss laws-based new software, AnglerFish (freeware, https://echmet.
View Article and Find Full Text PDFThermodynamic acidity constants (acid or acid-base dissociation constants, sometimes called also as ionization constants) and limiting ionic mobilities (both of them at defined temperature, usually 25°C) are the fundamental physicochemical characteristics of a weak electrolyte, that is, weak acid or weak base or ampholyte. We introduce a novel method for determining the data of a weak electrolyte by the nonlinear regression of effective electrophoretic mobility versus buffer composition dependence when measured in a set of BGEs with various pH. To correct the experimental data for zero ionic strength we use the extended Debye-Hückel model and Onsager-Fuoss law with no simplifications.
View Article and Find Full Text PDFPeak shapes in electrophoresis are often distorted from the ideal Gaussian shape due to disturbing phenomena, of which the most important is electromigration dispersion. For fully dissociated analytes, there is a tight analogy between nonlinear models describing a separation process in chromatography and electrophoresis. When the velocity of the separated analyte depends on the concentration of the co-analyte, the consequence is a mutual influence of the analytes couples, which distorts both analyte zones.
View Article and Find Full Text PDFCompare time (speed) and product quality goals in a surgical procedural task. Secondary school students participating in a medical simulation-based training activity participated in a randomized experiment. Each participant completed eight repetitions of a blood vessel ligation.
View Article and Find Full Text PDFThe continuity equations that describe the movement of ions in liquid solutions under the influence of an external stationary electric field, as it is utilized in electrophoresis, were introduced a long time ago starting with Kohlrausch in 1897. From that time on, there have been many attempts to solve the equations and to discuss the results. In electrophoresis, special attention has always been devoted to the peak shapes obtained by the detector since the shapes have a tight connection with the phenomena taking place during electromigration and influence the efficiency and selectivity of the separation.
View Article and Find Full Text PDFObjectives: An incremental (growth) theory of intelligence (mindset), compared with an entity (fixed) mindset, has been associated with improved motivation and performance. Interventions to induce incremental beliefs have improved performance on non-surgical motor tasks. We sought to evaluate the impact of 2 brief interventions to induce incremental beliefs in the context of learning a surgical task.
View Article and Find Full Text PDFOver the last 20 years, a significant part of the research in exploratory robotics partially switches from looking for the most efficient way of exploring an unknown environment to finding what could motivate a robot to autonomously explore it. Moreover, a growing literature focuses not only on the topological description of a space (dimensions, obstacles, usable paths, etc.) but rather on more semantic components, such as multimodal objects present in it.
View Article and Find Full Text PDFIn line with the sensorimotor contingency theory, we investigate the problem of the perception of space from a fundamental sensorimotor perspective. Despite its pervasive nature in our perception of the world, the origin of the concept of space remains largely mysterious. For example in the context of artificial perception, this issue is usually circumvented by having engineers pre-define the spatial structure of the problem the agent has to face.
View Article and Find Full Text PDFPurpose: To evaluate the validity of scores from three instruments measuring achievement goal motivation-related constructs: a shortened version of Dweck's Implicit Theories of Intelligence Scale (ITIS-S), measuring incremental and entity mindsets; Elliot's Achievement Goal Questionnaire-Revised (AGQ-R), measuring mastery-approach, mastery-avoidance, performance-approach, and performance-avoidance achievement goals; and Midgley's Patterns of Adaptive Learning Scales (PALS), measuring mastery, performance-approach, and performance-avoidance achievement goals.
Method: High school students participating in a medical simulation training activity in May 2017 completed each instrument. The authors evaluated internal structure using reliability and factor analysis and relations with other variables using the multitrait-multimethod matrix.
Problem: Mindfulness training includes mindfulness meditation, which has been shown to improve both attention and self-awareness. Medical providers in the intensive care unit often deal with difficult situations with strong emotions, life-and-death decisions, and both interpersonal and interprofessional conflicts. The effect of mindfulness meditation training on healthcare providers during acute care tasks such as cardiopulmonary resuscitation remains unknown.
View Article and Find Full Text PDFConductivity detection is a universal detection technique often encountered in electrophoretic separation systems, especially in modern chip-electrophoresis based devices. On the other hand, it is sparsely combined with another contemporary trend of enhancing limits of detection by means of various preconcentration strategies. This can be attributed to the fact that a preconcentration experimental setup usually brings about disturbances in a conductivity baseline.
View Article and Find Full Text PDF