Chronically elevated levels of glucose are deleterious to pancreatic β cells and contribute to β cell dysfunction, which is characterized by decreased insulin production and a loss of β cell identity. The Krüppel-like transcription factor, Glis3 has previously been shown to positively regulate insulin transcription and mutations within the Glis3 locus have been associated with the development of several pathologies including type 2 diabetes mellitus. In this report, we show that Glis3 is significantly downregulated at the transcriptional level in INS1 832/13 cells within hours of being subjected to high glucose concentrations and that diminished expression of Glis3 is at least partly attributable to increased oxidative stress.
View Article and Find Full Text PDFImmunohistochemistry is a widely used technique to explore protein expression and localization during both normal developmental and disease states. Although many immunohistochemistry protocols have been optimized for mammalian tissue and tissue sections, these protocols often require modification and optimization for non-mammalian model organisms. Zebrafish are increasingly used as a model system in basic, biomedical, and translational research to investigate the molecular, genetic, and cell biological mechanisms of developmental processes.
View Article and Find Full Text PDFGli-similar 3 (Glis3) is Krüppel-like transcription factor associated with the transcriptional regulation of insulin. Mutations within the Glis3 locus have been implicated in a number of pathologies including diabetes and hypothyroidism. Despite its clinical significance, little is known about the proteins and posttranslational modifications that regulate Glis3 transcriptional activity.
View Article and Find Full Text PDFThe transcription factor Gli-similar 3 (Glis3) plays a critical role in the generation of pancreatic ß cells and the regulation insulin gene transcription and has been implicated in the development of several pathologies, including type 1 and 2 diabetes and polycystic kidney disease. However, little is known about the proteins and posttranslational modifications that regulate or mediate Glis3 transcriptional activity. In this study, we identify by mass-spectrometry and yeast 2-hybrid analyses several proteins that interact with the N-terminal region of Glis3.
View Article and Find Full Text PDFJ Endocrinol Diabetes Obes
April 2014
Congenital hypothyroidism (CH) is the most frequent endocrine disorder in neonates. While several genetic mutations have been identified that result in developmental defects of the thyroid gland or thyroid hormone synthesis, genetic factors have yet to be identified in many CH patients along with the mechanisms underlying their pathophysiology. Mutations in the gene encoding the Krüppel-like transcription factor, GLI-similar 3 (GLIS3) have been associated with the development of a syndrome characterized by congenital hypothyroidism and neonatal diabetes and similar phenotypes were observed in mouse knockout models of .
View Article and Find Full Text PDFTranscriptional regulation of insulin in pancreatic β-cells is mediated primarily through enhancer elements located within the 5' upstream regulatory region of the preproinsulin gene. Recently, the Krüppel-like transcription factor, Gli-similar 3 (Glis3), was shown to bind the insulin (INS) promoter and positively influence insulin transcription. In this report, we examined in detail the synergistic activation of insulin transcription by Glis3 with coregulators, CREB-binding protein (CBP)/p300, pancreatic and duodenal homeobox 1 (Pdx1), neuronal differentiation 1 (NeuroD1), and v-maf musculoaponeurotic fibrosarcoma oncogene homolog A (MafA).
View Article and Find Full Text PDFGli-similar (Glis) 1-3 proteins constitute a subfamily of Krüppel-like zinc-finger proteins that are closely related to members of the Gli family. Glis proteins have been implicated in several pathologies, including cystic kidney disease, diabetes, hypothyroidism, fibrosis, osteoporosis, psoriasis, and cancer. In humans, a mutation in the Glis2 gene has been linked to the development of nephronophthisis (NPHP), a recessive cystic kidney disease, while mutations in Glis3 lead to an extended multisystem phenotype that includes the development of neonatal diabetes, polycystic kidneys, congenital hypothyroidism, and facial dysmorphism.
View Article and Find Full Text PDFGlis3 is a member of the Glis subfamily of Krüppel-like zinc finger transcription factors. Recently, Glis3 has been linked to both type I and type II diabetes and shown to positively regulate insulin gene expression. In this study, we have identified a region within the N terminus of Glis3 that shares high levels of homology with the Cubitus interruptus (Ci)/Gli family of proteins.
View Article and Find Full Text PDFGli-similar 1-3 (Glis1-3) constitute a subfamily of Krüppel-like zinc finger (ZF) transcription factors that are closely related to the Gli protein family. Mutations in GLIS2 are linked to nephronophthisis, a chronic kidney disease characterized by renal fibrosis and atrophy in children and young adults. Currently, very little information exists about the mechanism of action of Glis2, its target genes, or the signaling pathways that regulate its activity.
View Article and Find Full Text PDFGLI-similar (Glis) 1-3 proteins constitute a subfamily of the Krüppel-like zinc finger transcription factors that are closely related to the Gli family. Glis1-3 play critical roles in the regulation of a number of physiological processes and have been implicated in several pathologies. Mutations in GLIS2 have been linked to nephronophthisis, an autosomal recessive cystic kidney disease.
View Article and Find Full Text PDFIn this study, we report that the Krüppel-like zinc finger transcription factor Gli-similar 3 (Glis3) is induced during the secondary transition of pancreatic development, a stage of cell lineage specification and extensive patterning, and that Glis3(zf/zf) mutant mice develop neonatal diabetes, evidenced by hyperglycemia and hypoinsulinemia. The Glis3(zf/zf) mutant mouse pancreas shows a dramatic loss of beta and delta cells, contrasting a smaller relative loss of alpha, PP, and epsilon cells. In addition, Glis3(zf/zf) mutant mice develop ductal cysts, while no significant changes were observed in acini.
View Article and Find Full Text PDFTo isolate the CYP1A1 promoter/enhancer from zebrafish, a PAC genomic library was screened with sequence derived from the 5'UTR of the zfCYP1A1 cDNA. Sequence was identified that contained CAAT and TATA boxes, had a large intron within the 5'UTR, and showed 100% sequence identity to zfCYP1A1 cDNAs in the 5'UTR and initial 300 bp of the open reading frame. Oligonucleotides complementary to the 5'UTR were used to detect zfCYP1A1 mRNA in zebrafish liver cells (ZFL) exposed to TCDD, thus identifying the gene as a TCDD-inducible CYP1A1.
View Article and Find Full Text PDFIn vitro mutagenesis was utilized to render the various xenobiotic response elements (XREs) within the zebrafish CYP1A promoter/enhancer region non-functional either independently or in combination. Reporter gene assays revealed that only XRE4, XRE7, and XRE8 contributed to maximal TCDD-mediated induction of luciferase and that the contribution of each XRE to maximal induction was not equal. XRE4 and XRE7 were capable of functioning independently, while XRE8 alone could not support TCDD-mediated induction but was required for the ability of XRE4 and XRE7 to support maximal induction.
View Article and Find Full Text PDFPresented here is the complete genome sequence of Thiomicrospira crunogena XCL-2, representative of ubiquitous chemolithoautotrophic sulfur-oxidizing bacteria isolated from deep-sea hydrothermal vents. This gammaproteobacterium has a single chromosome (2,427,734 base pairs), and its genome illustrates many of the adaptations that have enabled it to thrive at vents globally. It has 14 methyl-accepting chemotaxis protein genes, including four that may assist in positioning it in the redoxcline.
View Article and Find Full Text PDF