Hexavalent chromium [Cr(VI)] is an established human lung carcinogen, but the carcinogenesis mechanism is poorly understood. Chromosome instability, a hallmark of lung cancer, is considered a major driver of Cr(VI)-induced lung cancer. Unrepaired DNA double-strand breaks are the underlying cause, and homologous recombination repair is the primary mechanism preventing Cr(VI)-induced DNA breaks from causing chromosome instability.
View Article and Find Full Text PDFToxicol Appl Pharmacol
December 2022
Hexavalent chromium [Cr(VI)] is a well-known and widespread environmental contaminant associated with a variety of adverse health effects, in particular lung cancer. The primary route of exposure in humans is through inhalation. Particulate forms of Cr(VI) are the most potent but in vivo studies are difficult.
View Article and Find Full Text PDFNanoparticles possess a number of useful properties that make them useful for a variety of industrial and commercial applications. The small size of nanoparticles means that they are respirable and can penetrate deep into the lung when inhaled. Because of this, there is interest in assessing possible toxic effects of nanoparticles on the respiratory system.
View Article and Find Full Text PDFChlorine is a chemical threat agent that can be harmful to humans. Acute inhalation of high levels of chlorine results in the death of airway epithelial cells and can lead to persistent adverse effects on respiratory health, including airway remodeling and hyperreactivity. We previously developed a mouse chlorine exposure model in which animals developed inflammation and fibrosis in large airways.
View Article and Find Full Text PDFChlorine is a pulmonary toxicant to which humans can be exposed through accidents or intentional releases. Acute effects of chlorine inhalation in humans and animal models have been well characterized, but less is known about persistent effects of acute, high-level chlorine exposures. In particular, animal models that reproduce the long-term effects suggested to occur in humans are lacking.
View Article and Find Full Text PDFDiabetes is strongly associated with systemic inflammation and oxidative stress, but its effect on pulmonary vascular disease and lung function has often been disregarded. Several studies identified restrictive lung disease and fibrotic changes in diabetic patients and in animal models of diabetes. While microvascular dysfunction is a well-known complication of diabetes, the mechanisms leading to diabetes-induced lung injury have largely been disregarded.
View Article and Find Full Text PDFToxicol Appl Pharmacol
June 2017
Acrolein is a highly toxic, volatile, unsaturated aldehyde generated during incomplete combustion as in tobacco smoke and indoor fires. Because the transient receptor potential ankyrin 1 (TRPA1) channel mediates tobacco smoke-induced lung injury, we assessed its role in high-level acrolein-induced toxicity in mice. Acrolein (100-275ppm, 10-30min) caused upper airway epithelial sloughing, bradypnea and oral gasping, hypothermia, cardiac depression and mortality.
View Article and Find Full Text PDFChlorine gas is a toxic respiratory irritant that is considered a chemical threat agent because of the potential for release in industrial accidents or terrorist attacks. Chlorine inhalation damages the respiratory tract, including the airways and distal lung, and can result in acute lung injury. Some individuals exposed to chlorine experience a full recovery from acute injury, whereas others develop persistent adverse effects, such as respiratory symptoms, inflammation, and lung-function decrements.
View Article and Find Full Text PDFChlorine is a commonly used, reactive compound to which humans can be exposed via accidental or intentional release resulting in acute lung injury. Formulations of rolipram (a phosphodiesterase inhibitor), triptolide (a natural plant product with anti-inflammatory properties), and budesonide (a corticosteroid), either neat or in conjunction with poly(lactic:glycolic acid) (PLGA), were developed for treatment of chlorine-induced acute lung injury by intramuscular injection. Formulations were produced by spray-drying, which generated generally spherical microparticles that were suitable for intramuscular injection.
View Article and Find Full Text PDFChronic exposure to crystalline silica (CS) causes silicosis, an irreversible lung inflammatory disease that may eventually lead to lung cancer. In this study, we demonstrate that in K-ras(LA1) mice, CS exposure markedly enhances the lung tumour burden and genetic deletion of leukotriene B4 receptor-1 (BLT1(-/-)) attenuates this increase. Pulmonary neutrophilic inflammation induced by CS is significantly reduced in BLT1(-/-)K-ras(LA1) mice.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
January 2015
Chlorine is a toxic gas used in a variety of industrial processes and is considered a chemical threat agent. High-level chlorine exposure causes acute lung injury, but the long-term effects of acute chlorine exposure are unclear. Here we characterized chronic pulmonary changes following acute chlorine exposure in mice.
View Article and Find Full Text PDFToxicol Appl Pharmacol
October 2013
Chlorine gas is a widely used industrial compound that is highly toxic by inhalation and is considered a chemical threat agent. Inhalation of high levels of chlorine results in acute lung injury characterized by pneumonitis, pulmonary edema, and decrements in lung function. Because inflammatory processes can promote damage in the injured lung, anti-inflammatory therapy may be of potential benefit for treating chemical-induced acute lung injury.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
January 2013
Chlorine is a reactive gas that is considered a chemical threat agent. Humans who develop acute lung injury from chlorine inhalation typically recover normal lung function; however, a subset can experience chronic airway disease. To examine pathological changes following chlorine-induced lung injury, mice were exposed to a single high dose of chlorine, and repair of the lung was analyzed at multiple times after exposure.
View Article and Find Full Text PDFBackground: Chlorine is a widely used toxic compound that is considered a chemical threat agent. Chlorine inhalation injures airway epithelial cells, leading to pulmonary abnormalities. Efficient repair of injured epithelium is necessary to restore normal lung structure and function.
View Article and Find Full Text PDFChlorine is a highly toxic respiratory irritant that when inhaled causes epithelial cell injury, alveolar-capillary barrier disruption, airway hyperreactivity, inflammation, and pulmonary edema. Chlorine is considered a chemical threat agent, and its release through accidental or intentional means has the potential to result in mass casualties from acute lung injury. The type 4 phosphodiesterase inhibitor rolipram was investigated as a rescue treatment for chlorine-induced lung injury.
View Article and Find Full Text PDFAmbient particulate matter (PM) exposure is known to have adverse effects on respiratory health, but the underlying mechanisms remain obscure. We tested the hypothesis that macrophages and epithelial cells synergize to produce maximal cytokine release in response to PM exposure, thereby promoting inflammatory responses. We developed a co-culture model using MLE-12 (mouse lung epithelial) cells and RAW 264.
View Article and Find Full Text PDFTo determine whether melatonin, via its MT(1) G protein-coupled receptor, impacts mouse mammary gland development, we generated a mouse mammary tumor virus (MMTV)-MT1-Flag-mammary gland over-expressing (MT1-mOE) transgenic mouse. Increased expression of the MT(1) -Flag transgene was observed in the mammary glands of pubescent MT1-mOE transgenic female mice, with further significant increases during pregnancy and lactation. Mammary gland whole mounts from MT1-mOE mice showed significant reductions in ductal growth, ductal branching, and terminal end bud formation.
View Article and Find Full Text PDFChlorine gas is considered a chemical threat agent that can cause acute lung injury. Studies in the early 20th century on war gases led Haber to postulate that the dose of an inhaled chemical expressed as the product of gas concentration and exposure time leads to a constant toxicological effect (Haber's Law). In the present work, mice were exposed to a constant dose of chlorine (100 ppm-h) delivered using different combinations of concentration and time (800 ppm/7.
View Article and Find Full Text PDFChlorine is considered a chemical threat agent to which humans may be exposed as a result of accidental or intentional release. Chlorine is highly reactive, and inhalation of the gas causes cellular damage to the respiratory tract, inflammation, pulmonary edema, and airway hyperreactivity. Drugs that increase intracellular levels of the signaling molecule cyclic AMP (cAMP) may be useful for treatment of acute lung injury through effects on alveolar fluid clearance, inflammation, and airway reactivity.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
June 2010
Inflammation is associated with various pulmonary diseases and contributes to the pathogenesis of acute lung injury. We previously identified a proinflammatory signaling pathway triggered by G protein-coupled receptors (GPCRs) in which stimulation of G(q)-coupled GPCRs results in activation of the transcription factor NF-kappaB. Because damage to the lung causes the release of multiple mediators acting through G(q)-coupled GPCRs, this signaling pathway is likely to contribute to inflammatory processes in the injured lung.
View Article and Find Full Text PDFBackground: Silicosis is a complex lung disease for which no successful treatment is available and therefore lung transplantation is a potential alternative. Tumor necrosis factor alpha (TNFalpha) plays a central role in the pathogenesis of silicosis. TNFalpha signaling is mediated by the transcription factor, Nuclear Factor (NF)-kappaB, which regulates genes controlling several physiological processes including the innate immune responses, cell death, and inflammation.
View Article and Find Full Text PDFAcute lung injury is associated with an inflammatory response resulting from the action of multiple mediators. Many proinflammatory mediators released during lung injury exert effects by binding to G protein-coupled receptors (GPCRs). The authors' earlier studies showed that substance P (SP), a ligand for the tachykinin 1 receptor, induced nuclear factor (NF)-kappa B activation and interleukin (IL)-8 up-regulation through a G(q)-dependent pathway.
View Article and Find Full Text PDFHumans may be exposed to chlorine gas via accidental or intentional release, and effective countermeasures for the resulting lung injury are lacking. To develop a model in which therapeutic measures could be evaluated, lung injury induced by chlorine inhalation in two inbred mouse strains was examined. C57BL/6 and FVB/N mice were exposed for 1.
View Article and Find Full Text PDF