We demonstrate coherent combining (phase locking) of seven laser beams emerging from an adaptive fiber-collimator array over a 7 km atmospheric propagation path using a target-in-the-loop (TIL) setting. Adaptive control of the piston and the tip and tilt wavefront phase at each fiber-collimator subaperture resulted in automatic focusing of the combined beam onto an unresolved retroreflector target (corner cube) with precompensation of quasi-static and atmospheric turbulence-induced phase aberrations. Both phase locking (piston) and tip-tilt control were performed by maximizing the target-return optical power using iterative stochastic parallel gradient descent (SPGD) techniques.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
October 2006
A scalable adaptive optics (AO) control system architecture composed of asynchronous control clusters based on the stochastic parallel gradient descent (SPGD) optimization technique is discussed. It is shown that subdivision of the control channels into asynchronous SPGD clusters improves the AO system performance by better utilizing individual and/or group characteristics of adaptive system components. Results of numerical simulations are presented for two different adaptive receiver systems based on asynchronous SPGD clusters-one with a single deformable mirror with Zernike response functions and a second with tip-tilt and segmented wavefront correctors.
View Article and Find Full Text PDF