ZL006 and IC87201 have been presented as efficient inhibitors of the nNOS/PSD-95 protein-protein interaction and shown great promise in cellular experiments and animal models of ischemic stroke and pain. Here, we investigate the proposed mechanism of action of ZL006 and IC87201 using biochemical and biophysical methods, such as fluorescence polarization (FP), isothermal titration calorimetry (ITC), and (1)H-(15)N HSQC NMR. Our data show that under the applied in vitro conditions, ZL006 and IC87201 do not interact with the PDZ domains of nNOS or PSD-95, nor inhibit the nNOS-PDZ/PSD-95-PDZ interface by interacting with the β-finger of nNOS-PDZ.
View Article and Find Full Text PDFDisrupting the interaction between the PDZ protein PSD-95 and the C-terminal domain of the 5-HT2A serotonin receptor has been shown to reduce hyperalgesia in a rodent model of neuropathic pain. Here, we designed and synthesized PDZ ligands capable of binding to the first PDZ domain (PDZ1) of the PSD-95 protein and evaluated their biological activity in vitro and in vivo. A series of substituted indoles was identified by docking simulations, and six novel analogues were synthesized.
View Article and Find Full Text PDF