Publications by authors named "Gary T Wang"

This Letter describes the lead discovery, optimization, and biological characterization of a series of substituted 4-amino-1H-pyrazolo[3,4-d]pyrimidines as potent inhibitors of IGF1R, EGFR, and ErbB2. The leading compound 11 showed an IGF1R IC(50) of 12 nM, an EGFR (L858R) IC(50) of 31 nM, and an ErbB2 IC(50) of 11 nM, potent activity in cellular functional and anti-proliferation assays, as well as activity in an in vivo pharmacodynamic assay.

View Article and Find Full Text PDF

The insulin-like growth factor-1 receptor (IGF-1R) and ErbB family of receptors are receptor tyrosine kinases that play important roles in cancer. Lack of response and resistance to therapies targeting ErbB receptors occur and are often associated with activation of the IGF-1R pathway. Combinations of agents that inhibit IGF-1R and ErbB receptors have been shown to synergistically block cancer cell proliferation and xenograft tumor growth.

View Article and Find Full Text PDF

A series of aryl sulfonamides of 5,6-disubstituted anthranilic acids were identified as potent inhibitors of methionine aminopeptidase-2 (MetAP2). Small alkyl groups and 3-furyl were tolerated at the 5-position of anthranilic acid, while -OCH(3), CH(3), and Cl were found optimal for the 6-position. Placement of 2-aminoethoxy group at the 6-position enabled interaction with the second Mn(2+) but did not result in enhancement in potency.

View Article and Find Full Text PDF

Methionine aminopeptidase-2 (MetAP2) is a novel target for cancer therapy. As part of an effort to discover orally active reversible inhibitors of MetAP2, a series of anthranilic acid sulfonamides with micromolar affinities for human MetAP2 were identified using affinity selection by mass spectrometry (ASMS) screening. These micromolar hits were rapidly improved to nanomolar leads on the basis of insights from protein crystallography; however, the compounds displayed extensive binding to human serum albumin and had limited activity in cellular assays.

View Article and Find Full Text PDF

Based on the X-ray crystallography of our lead compound 1-(5-chloro-2,4-dimethoxyphenyl)-3-(5-cyanopyrazin-2-yl)urea in the checkpoint kinase 1 (Chk1) enzyme, we modified R4, and to a lesser extent, R2, and R5 of the phenyl ring, and made a variety of N-aryl-N'-pyrazinylurea Chk1 inhibitors. Enzymatic activity less than 20 nM was observed in 15 of 41 compounds. Compound 8i provided the best overall results in the cellular assays as it abrogated doxorubicin-induced cell cycle arrest (IC50=1.

View Article and Find Full Text PDF

The discovery of 1-(5-chloro-2-alkoxyphenyl)-3-(5-cyanopyrazin-2-yl)ureas as a new class of potent (IC(50) values of 3-10 nM) and selective inhibitors of Chk1 kinase was described. One of these compounds (2e) potentiates HeLa cells by over 22-fold against doxorubicin in an antiproliferation assay, and SW620 cells against camptothecin by 20-fold in an antiproliferation assay and 14-fold in a soft agar assay. Flow cytometry (FACS) analysis confirmed that 2e abrogated G2 checkpoint arrest of H1299 cells caused by doxorubicin and S checkpoint arrest caused by camptothecin.

View Article and Find Full Text PDF

2-Amino-4-phenyl pyridine and, to a lesser extent, 4-amino-6-phenyl pyrimidine, were established as isosteres of trans-cinnamide moiety. Applying this isosterism to previously reported p-arylthio cinnamides resulted in the identification of 4-amino-6-(p-arylthio)phenyl-pyrimidines and 2-amino-4-(p-arylthio)phenyl-pyridines as potent antagonists of LFA-1/ICAM-1 binding.

View Article and Find Full Text PDF

A non-methionine FT inhibitor lead structure (1) was designed through computer modeling of the peptidomimetic FT inhibitor ABT839. Optimization of this lead resulted in compounds 2e and 2g, with FT IC(50) values of 1.3 and 1.

View Article and Find Full Text PDF

(+/-)-(2R,3R,5R)-[2-(1'-S-acetamido-3'-methyl)butyl-3-methoxycarbonyl]tetrahydrofuran-5-carboxylic acid (9) and (+/-)-(2R,3R,5R)-[2-(1'-S-acetamido-3'-methyl)butyl-3-(4'-imidazolyl)]tetrahydrofuran 5-carboxylic acid (14) were synthesized as inhibitors of influenza neuraminidase (NA). Both compounds 9 and 14 inhibit influenza NA A with an IC(50) of about 0.5 microM and NA B with an IC(50) of 1.

View Article and Find Full Text PDF

A series of imidazole-containing methyl ethers (4-5) have been designed and synthesized as potent and selective farnesyltransferase inhibitors (FTIs) by transposition of the D-ring to the methyl group on the imidazole of the previously reported FTIs 3. Several compounds such as 4h and 5b demonstrate superior enzymatic activity to the current benchmark compound tipifarnib (1) with IC(50) values in the lower subnanomolar range, while maintaining excellent cellular activity comparable to tipifarnib. The compounds are characterized as being simple, easier to make, and possess no chiral center involved.

View Article and Find Full Text PDF

Farnesyltransferase inhibitors (FTIs) have emerged as a novel class of anti-cancer agents. Analogs of the potent FTI, 1-benzyl-5-(3-biphenyl-2-yl-propyl)-1H-imidazole, were synthesized and tested in vitro for their inhibitory activities. The most promising compound identified from this series is analog 29 that possesses potent enzymatic and cellular activities.

View Article and Find Full Text PDF

A novel series of 4-[(4-cyano-2-arylbenzyloxy)-(3-methyl-3H-imidazol-4-yl)methyl]benzonitriles have been synthesized as selective farnesyltransferase inhibitors using structure-based design. X-ray cocrystal structures of compound 20-FTase-HFP and A313326-FTase-HFP confirmed our initial design. The decreased interaction between the aryl groups and Ser 48 in GGTase-I binding site could be one possible reason to explain the improved selectivity for this new series of FTase inhibitors.

View Article and Find Full Text PDF