The COVID-19 (SARS-CoV-2 virus) pandemic has led to a substantial loss of human life worldwide by providing an unparalleled challenge to the public health system. The economic, psychological, and social disarray generated by the COVID-19 pandemic is devastating. Public health experts and epidemiologists worldwide are struggling to formulate policies on how to control this pandemic as there is no effective vaccine or treatment available which provide long-term immunity against different variants of COVID-19 and to eradicate this virus completely.
View Article and Find Full Text PDFThe whole world is devastated by the impact of the COVID-19 pandemic. The socioeconomic and other effects of COVID-19 on people are visible in all echelons of society. The main goal of countries is to stop the spreading of this pandemic by reducing the COVID-19 related new cases and deaths.
View Article and Find Full Text PDFAnalysis of longitudinal data with excessive zeros has gained increasing attention in recent years; however, current approaches to the analysis of longitudinal data with excessive zeros have primarily focused on balanced data. Dropouts are common in longitudinal studies; therefore, the analysis of the resulting unbalanced data is complicated by the missing mechanism. Our study is motivated by the analysis of longitudinal skin cancer count data presented by Greenberg, Baron, Stukel, Stevens, Mandel, Spencer, Elias, Lowe, Nierenberg, Bayrd, Vance, Freeman, Clendenning, Kwan, and the Skin Cancer Prevention Study Group[New England Journal of Medicine 323, 789-795].
View Article and Find Full Text PDFIn medical and health studies, heterogeneities in clustered count data have been traditionally modeled by positive random effects in Poisson mixed models; however, excessive zeros often occur in clustered medical and health count data. In this paper, we consider a three-level random effects zero-inflated Poisson model for health-care utilization data where data are clustered by both subjects and families. To accommodate zero and positive components in the count response compatibly, we model the subject level random effects by a compound Poisson distribution.
View Article and Find Full Text PDF