Carbonaceous aerosols (CA) from anthropogenic emissions have been significantly reduced in urban China in recent years. However, the relative contributions of fossil and nonfossil sources to CA in rural and background regions of China remain unclear. In this study, the sources of different carbonaceous fractions in fine aerosols (PM) from five background sites of the China Meteorological Administration Atmosphere Watch Network during the winter of 2019 and 2020 were quantified using radiocarbon (C) and organic markers.
View Article and Find Full Text PDFIsotope-based records provide valuable information on past climate changes. However, it is not always trivial to disentangle past changes in the isotopic composition of precipitation from possible changes in evaporative enrichment, and seasonality may need to be considered. Here, we analyzed δH on n-alkanes and δO on hemicellulose sugars in sediments from Bichlersee, Bavaria, covering the Late Glacial and Early Holocene.
View Article and Find Full Text PDFThe repeated expansion of East Asian steppe cultures was a key driver of Eurasian history, forging new social, economic, and biological links across the continent. Climate has been suggested as important driver of these poorly understood cultural expansions, but paleoclimate records from the Mongolian Plateau often suffer from poor age control or ambiguous proxy interpretation. Here, we use a combination of geochemical analyses and comprehensive radiocarbon dating to establish the first robust and detailed record of paleohydrological conditions for Lake Telmen, Mongolia, covering the past ~ 4000 years.
View Article and Find Full Text PDFCarbon-14 is a key radionuclide in the safety assessment of deep geological repositories (DGR) for low- and intermediate-level radioactive waste (L/ILW). Irradiated metallic wastes generated during the decommissioning of nuclear power plants are an important source of C after their disposal in a DGR. The chemical form of C released from the irradiated metallic wastes determines the pathway of migration from the DGR into the environment.
View Article and Find Full Text PDFThis study aims to critically evaluate the source apportionment of fine particles by multiple receptor modelling approaches, including carbon mass balance modelling of filter-based radiocarbon (C) data, Chemical Mass Balance (CMB) and Positive Matrix Factorization (PMF) analysis on filter-based chemical speciation data, and PMF analysis on Aerosol Mass Spectrometer (AMS-PMF) or Aerosol Chemical Speciation Monitor (ACSM-PMF) data. These data were collected as part of the APHH-Beijing (Atmospheric Pollution and Human Health in a Chinese Megacity) field observation campaigns from 10 November to 12 December in winter 2016 and from 22 May to 24 June in summer 2017. C analysis revealed the predominant contribution of fossil fuel combustion to carbonaceous aerosols in winter compared with non-fossil fuel sources, which is supported by the results from other methods.
View Article and Find Full Text PDFDynamic elastic strain in ~1.8 and 1.0 m diameter containment vessels containing a high explosive detonation was measured using an array of fiber Bragg gratings.
View Article and Find Full Text PDFSource quantification of carbonaceous aerosols in the Chinese outflow regions still remains uncertain despite their high mass concentrations. Here, we unambiguously quantified fossil and nonfossil contributions to elemental carbon (EC) and organic carbon (OC) of total suspended particles (TSP) from a regional receptor site in the outflow of Northeast China using radiocarbon measurement. OC and EC concentrations were lower in summer, representing mainly marine air, than in other seasons, when air masses mostly traveled over continental regions in Mongolia and northeast China.
View Article and Find Full Text PDFNucl Instrum Methods Phys Res B
January 2013
We designed and optimized a novel device "target" that directs a CO gas pulse onto a Ti surface where a Cs beam generates C from the CO. This secondary ionization target enables an accelerator mass spectrometer to ionize pulses of CO in the negative mode to measure C/C isotopic ratios in real time. The design of the targets were based on computational flow dynamics, ionization mechanism and empirical optimization.
View Article and Find Full Text PDFDetection of explosives is important for public safety. A recently developed low-temperature plasma (LTP) probe for desorption and ionization of samples in the ambient environment ( Anal. Chem.
View Article and Find Full Text PDFAmbient ionization methods such as desorption electrospray ionization (DESI) allow the analysis of chemicals adsorbed at surfaces without the need for sample (or surface) pretreatment. A limitation of current implementations of these ionization sources is the small size of the area that can be sampled. This makes examination of surfaces of large areas time-consuming because of the need to raster across the surface.
View Article and Find Full Text PDFA miniature mass spectrometer was modified by incorporating a conversion dynode detector system and the appropriate electronics to allow the detection of negatively charged ions. The system was fitted with a discontinuous atmospheric pressure interface to allow external ionization by desorption electrospray ionization (DESI). It was used to identify the explosives 2,4,6-trinitrotoluene (TNT), 2,4,6-trinitrophenyl-N-methylnitramine (Tetryl), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) present in trace amounts on surfaces (500 pg/cm(2) to 1 microg/cm(2)) both individually and as components of mixtures.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
August 2009
A method is described to improve resolution and peak shape in the Orbitrap under certain experimental conditions. In these experiments, an asymmetric anharmonic axial potential was first produced in the Orbitrap by detuning the voltage on the compensator electrode, which results in broad and multiply split mass spectral peaks. An AC waveform applied to the outer electrode, 180 degrees out of phase with ion axial motion and resonant with the frequency of ion axial motion, caused ions of a given m/z to be de-excited to the equator (z = 0) and then immediately re-excited.
View Article and Find Full Text PDFDesorption electrospray ionization (DESI) is a droplet-based ionization method that is applied to samples in the ambient environment with little or no sample preparation. Its utility for industrial applications is explored here for the case of pharmaceutical cleaning validation. A non-proximate large-area DESI system was built to examine representative areas of the surfaces of reaction vessels used in active product ingredient (API) manufacturing.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
September 2008
The behavior of a completely new ion trap is shown with SIMION 7.0 simulations. The simulated trap, which was a mix of a linear and a 3D trap, was made by axially setting two ion guides with a gap between them.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
May 2008
An ion guide, consisting of three rods carrying three alternating current (AC) voltages symmetrically delayed, called a tripole, was used as a linear ion trap (LIT) and studied by computer simulations. Radial containment of ions was also demonstrated with the pseudopotential which was calculated by approximating the tripole electric potential to the multipoles expansion. This work found a new analyte concentrator, which performs effective ion ejection, and is suitable for use with time-of-flight mass spectrometry.
View Article and Find Full Text PDFA novel three rod (tripole) ion optic to which three AC voltages with symmetrically delayed phase shifts were applied to each electrode. We studied its ion guiding, focusing, and mass filtering capabilities by SIMION ver. 7.
View Article and Find Full Text PDF