The structure of the transmembrane domain of the pH-activated bacterial potassium channel KcsA has been extensively characterized, yet little information is available on the structure of its cytosolic, functionally critical N- and C-termini. This study presents high-resolution magic angle spinning (HR-MAS) and fractional deuteration as tools to study these poorly resolved regions for proteoliposome-embedded KcsA. Using H-detected HR-MAS NMR, we show that the C-terminus transitions from a rigid structure to a more dynamic structure as the solution is rendered acidic.
View Article and Find Full Text PDFThe membrane environment, including specific lipid characteristics, plays important roles in the folding, stability, and gating of the prokaryotic potassium channel KcsA. Here we study the effect of membrane composition on the population of various functional states of KcsA. The spectra provide support for the previous observation of copurifying phospholipids with phosphoglycerol headgroups.
View Article and Find Full Text PDFArch Biochem Biophys
September 2013
A new, very efficient, class of thioglycoside substrates has been found for β-glucosidase. While thioglycosides are usually resistant to hydrolysis, even in the presence of acids or most glycohydrolases, the β-D-glucopyranosides of 2-mercaptobenzimidazole (GlcSBiz) and 2-mercaptobenzoxazole (GlcSBox) have been found to be excellent substrates for β-glucosidase from both sweet almond (a family 1 glycohydrolase) and Aspergillus niger (a family 3 glycohydrolase), reacting nearly as well as p-nitrophenyl β-D-glucoside. The enzyme-catalyzed hydrolysis of GlcSBiz proceeds with retention of configuration.
View Article and Find Full Text PDF