Publications by authors named "Gary S Grest"

Polymers are an effective test bed for studying topological constraints in condensed matter due to a wide array of synthetically available chain topologies. When linear and ring polymers are blended together, emergent rheological properties are observed as the blend can be more viscous than either of the individual components. This emergent behavior arises since ring-linear blends can form long-lived topological constraints as the linear polymers thread the ring polymers.

View Article and Find Full Text PDF

Disparate polymers often do not mix well, and the resulting immiscible interfaces are mechanically weaker than the bulk, which is undesirable for many technological applications. Large-scale molecular simulations are performed to demonstrate the effectiveness of diblock ring polymers as a new type of adhesive for immiscible polymer interfaces. The peak stress σ and the failure strain γ upon shear deformation approach the bulk values with increasing diblock ring length and coverage.

View Article and Find Full Text PDF

Conformationally fluctuating, globally compact macromolecules such as polymeric rings, single-chain nanoparticles, microgels, and many-arm stars display complex dynamic behaviors due to their rich topological structure and intermolecular organization. Synthetic rings are hybrid objects with conformations that display both ideal random walk and compact globular features, which can serve as models of genomic DNA. To date, emphasis has been placed on the effect of ring molecular weight on their unusual behaviors.

View Article and Find Full Text PDF

Physical networks formed by ionizable polymers with ionic clusters as crosslinks are controlled by coupled dynamics that transcend from ionic clusters through chain motion to macroscopic response. Here, the coupled dynamics, across length scales, from the ionic clusters to the networks in toluene swollen polystyrene sulfonate networks, were directly correlated, as the electrostatic environment of the physical crosslinks was altered. The multiscale insight is attained by coupling neutron spin echo measurements with molecular dynamics simulations, carried out to times typical of relaxation of polymers in solutions.

View Article and Find Full Text PDF

The association of ionizable polymers strongly affects their motion in solutions, where the constraints arising from clustering of the ionizable groups alter the macroscopic dynamics. The interrelation between the motion on multiple length and time scales is fundamental to a broad range of complex fluids including physical networks, gels, and polymer-nanoparticle complexes where long-lived associations control their structure and dynamics. Using neutron spin echo and fully atomistic, multimillion atom molecular dynamics (MD) simulations carried out to times comparable to that of chain segmental motion, the current study resolves the dynamics of networks formed by suflonated polystryene solutions for sulfonation fractions 0 ≤ ≤ 0.

View Article and Find Full Text PDF

Molecular dynamics simulations are used to demonstrate that a binary solvent can be used to stratify colloidal mixtures when the suspension is rapidly dried. The solvent consists of two components, one more volatile than the other. When evaporated at high rates, the more volatile component becomes depleted near the evaporation front and develops a negative concentration gradient from the bulk of the mixture to the liquid-vapor interface while the less volatile solvent is enriched in the same region and exhibit a positive concentration gradient.

View Article and Find Full Text PDF

Ionizable copolymers assembly in solutions is driven by the formation of ionic clusters. Fast clustering of the ionizable blocks often leads to the formation of far-from equilibrium assemblies that ultimately impact the structure of polymer membranes and affect their many applications. Using large-scale atomistic molecular dynamics simulations, we probe the effects of electrostatics on the formation of ionizable copolymer micelles that dominate their solution structure, with the overarching goal of defining the factors that control the assembly of structured ionizable copolymers.

View Article and Find Full Text PDF

Static structure factors are computed for large-scale, mechanically stable, jammed packings of frictionless spheres (three dimensions) and disks (two dimensions) with broad, power-law size dispersity characterized by the exponent -β. The static structure factor exhibits diverging power-law behavior for small wave numbers, allowing us to identify a structural fractal dimension d_{f}. In three dimensions, d_{f}≈2.

View Article and Find Full Text PDF

Ring polymers have fascinated scientists for decades, but experimental progress has been challenging due to the presence of linear chain contaminants that fundamentally alter dynamics. In this work, we report the unexpected slow stress relaxation behavior of concentrated ring polymers that arises due to ring-ring interactions and ring packing structure. Topologically pure, high molecular weight ring polymers are prepared without linear chain contaminants using cyclic poly(phthalaldehyde) (cPPA), a metastable polymer chemistry that rapidly depolymerizes from free ends at ambient temperatures.

View Article and Find Full Text PDF

Soft nanoparticles (NPs) are emerging candidates for nano medicine, particularly for intercellular imaging and targeted drug delivery. Their soft nature, manifested in their dynamics, allows translocation into organisms without damaging their membranes. A crucial step towards incorporating soft dynamic NPs in nano medicine, is to resolve their interrelation with membranes.

View Article and Find Full Text PDF

The topological constraints of nonconcatenated ring polymers force them to form compact loopy globular conformations with much lower entropy than unconstrained ideal rings. The closed-loop structure of ring polymers also enables them to be threaded by linear polymers in ring/linear blends, resulting in less compact ring conformations with higher entropy. This conformational entropy increase promotes mixing rings with linear polymers.

View Article and Find Full Text PDF

Explicit simulations of fluid mixtures of highly size-dispersed particles are constrained by numerical challenges associated with identifying pair-interaction neighbors. Recent algorithmic developments have ameliorated these difficulties to an extent, permitting more efficient simulations of systems with many large and small particles of disperse sizes. We leverage these capabilities to perform molecular dynamics simulations of binary sphere mixtures with elastically stiff particles approaching the hard sphere limit and particle size ratios of up to 50, approaching the colloidal limit.

View Article and Find Full Text PDF

Due to significant computational expense, discrete element method simulations of jammed packings of size-dispersed spheres with size ratios greater than 1:10 have remained elusive, limiting the correspondence between simulations and real-world granular materials with large size dispersity. Invoking a recently developed neighbor binning algorithm, we generate mechanically stable jammed packings of frictionless spheres with power-law size distributions containing up to nearly 4 000 000 particles with size ratios up to 1:100. By systematically varying the width and exponent of the underlying power laws, we analyze the role of particle size distributions on the structure of jammed packings.

View Article and Find Full Text PDF

A method of simulating the drying process of a soft matter solution with an implicit solvent model by moving the liquid-vapor interface is applied to various solution films and droplets. For a solution of a polymer and nanoparticles, we observe "polymer-on-top" stratification, similar to that found previously with an explicit solvent model. Furthermore, "polymer-on-top" is found even when the nanoparticle size is smaller than the radius of gyration of the polymer chains.

View Article and Find Full Text PDF

The diffusion of monomerically thin nanorods in polymer melts is studied by molecular dynamics simulations. We focus on the systems where chains are long enough to screen the hydrodynamic interactions such that the diffusion coefficient for the direction parallel to the rod decreases linearly with increasing rod length . In unentangled polymers, the diffusion coefficient for the direction normal to the rod exhibits a crossover from ~ to ~ with increasing , corresponding to a progressive coupling of nanorod motion to the polymers.

View Article and Find Full Text PDF

The stretchability of polymeric materials is critical to many applications such as flexible electronics and soft robotics, yet the stretchability of conventional cross-linked linear polymers is limited by the entanglements between polymer chains. We show using molecular dynamics simulations that cross-linked ring polymers are significantly more stretchable than cross-linked linear polymers. Compared to linear polymers, the entanglements between ring polymers do not act as effective cross-links.

View Article and Find Full Text PDF

The overlap concentration * of sodium polystyrene sulfonate in water is calculated using multichain atomistic and coarse grained (CG) simulations for a range of chain lengths. Fully atomistic molecular dynamics simulations are carried out for = 32-192 monomers. The CG model was parameterized to match the end-to-end distance from the atomistic simulations at small and allows us to simulate a much larger .

View Article and Find Full Text PDF

Despite there being an infinite variety of types of flow, most rheological studies focus on a single type such as simple shear. Using discrete element simulations, we explore bulk granular systems in a wide range of flow types at large strains and characterize invariants of the stress tensor for different inertial numbers and interparticle friction coefficients. We identify a strong dependence on the type of flow, which grows with increasing inertial number or friction.

View Article and Find Full Text PDF

Flowing granular materials often abruptly arrest if not driven by sufficient applied stresses. Such abrupt cessation of motion can be economically expensive in industrial materials handling and processing, and is significantly consequential in intermittent geophysical phenomena such as landslides and earthquakes. Using discrete element simulations, we calculate states of steady flow and arrest for granular materials under the conditions of constant applied pressure and shear stress, which are also most relevant in practice.

View Article and Find Full Text PDF

Polymer-tethered nanoparticles (NPs) are commonly added to a polymer matrix to improve material properties. Critical to the fabrication and processing of such composites is the mobility of the tethered NPs. Here we study the motion of tethered-NPs in unentangled polymer melts using molecular dynamics simulations, which offer a precise control of the grafted chain length and the number of grafted chains per particle.

View Article and Find Full Text PDF

A small number of associating groups incorporated onto a polymer backbone have dramatic effects on the mobility and viscoelastic response of the macromolecules in melts. These associating groups assemble, driving the formation of clusters, whose lifetime affects the properties of the polymers. Here, we probe the effects of the interaction strength on the structure and dynamics of two topologies, linear and star polymer melts, and further investigate blends of associative and non-associating polymers using molecular dynamics simulations.

View Article and Find Full Text PDF

Intuition tells us that a rolling or spinning sphere will eventually stop due to the presence of friction and other dissipative interactions. The resistance to rolling and spinning or twisting torque that stops a sphere also changes the microstructure of a granular packing of frictional spheres by increasing the number of constraints on the degrees of freedom of motion. We perform discrete element modeling simulations to construct sphere packings implementing a range of frictional constraints under a pressure-controlled protocol.

View Article and Find Full Text PDF

Adding small amounts of ring polymers to a matrix of their linear counterparts is known to increase the zero-shear-rate viscosity because of linear-ring threading. Uniaxial extensional rheology measurements show that, unlike its pure linear and ring constituents, the blend exhibits an overshoot in the stress growth coefficient. By combining these measurements with ex-situ small-angle neutron scattering and nonequilibrium molecular dynamics simulations, this overshoot is shown to be driven by a transient threading-unthreading transition of rings embedded within the linear entanglement network.

View Article and Find Full Text PDF

Leibler pioneered the idea that long enough matrix polymers of length will spontaneously dewet a chemically identical polymer layer, comprising chains of length , densely end-grafted to a flat surface ("brush"). This entropically driven idea is routinely used to explain experiments in which 10-20 nm diameter nanoparticles (NPs) densely grafted with polymer chains are found to phase separate from chemically identical melts for / ≳4. At lower grafting densities, these effects are also thought to underpin the self-assembly of grafted NPs into a variety of structures.

View Article and Find Full Text PDF

Molecular dynamics simulations confirm recent extensional flow experiments showing ring polymer melts exhibit strong extension-rate thickening of the viscosity at Weissenberg numbers Wi≪1. Thickening coincides with the extreme elongation of a minority population of rings that grows with Wi. The large susceptibility of some rings to extend is due to a flow-driven formation of topological links that connect multiple rings into supramolecular chains.

View Article and Find Full Text PDF