Publications by authors named "Gary Puterka"

Sipha maydis Passerini (Heteroptera: Aphididae) is a cereal pest with an extensive geographical range that includes countries in Europe, Asia, Africa, and South America. Reports of S. maydis in the United States have been infrequent since it was first detected in California, 2007.

View Article and Find Full Text PDF

Different concentrations of sucrose were used to investigate how survival and feeding was affected in four species of aphids (Hemiptera: Aphididae). Seven sucrose concentrations were evaluated in feeding chambers fitted with parafilm membranes and infested with nymphs of Aphis glycines Matsumura, Diuraphis noxia Kurdjumov, Myzus persicae Sulzer, or Schizaphis graminum Rondani at 25 °C and a photoperiod of 14:10 (L:D) h. Survival on each diet was recorded 1, 3, 5, 7, 9, and 11 d.

View Article and Find Full Text PDF

The Russian wheat aphid, Diuraphis noxia (Kurdjumov), invaded the United States in 1986 and soon became a significant pest of wheat. Diuraphis tritici (Gillette) is native to the United States and was firmly established on wild grasses before the arrival of Russian wheat aphid. Both species are known to coinfest the same grass hosts, during the time they enter the sexual phase in the fall, mate, and produce overwintering eggs.

View Article and Find Full Text PDF

The genetic sources for host-plant resistance to the greenbug (Schizaphis graminum Rondani) in barley (Hordeum vulgare ssp. spontaneum) are limited in that only two single dominant genes Rsg1 and Rsg2 are available for the complex of greenbug biotypes. We evaluated four new barley lines from the Wild Barley Diversity Collection (WBDC) that previously showed potential for greenbug resistance.

View Article and Find Full Text PDF

Background: The Russian wheat aphid, Diuraphis noxia Kurdjumov, is one of the most important pests of small grains throughout the temperate regions of the world. This phytotoxic aphid causes severe systemic damage symptoms in wheat, barley, and other small grains as a direct result of the salivary proteins it injects into the plant while feeding.

Results: We sequenced and de novo assembled the genome of D.

View Article and Find Full Text PDF

Lygus hesperus Knight (Hemiptera: Miridae) is a key agricultural pest in the western United States. In a recent study, proteins from Pantoea ananatis and Serratia marcescens (Enterobacteriales: Enterobacteriaceae) were identified in diet that was stylet probed and fed on by L. hesperus adults.

View Article and Find Full Text PDF

Unlabelled: Greenbug (Schizaphis graminum Rondani) biotypes are classified by their differential virulence to wheat, barley, and sorghum varieties possessing greenbug resistance genes. Virulent greenbug biotypes exert phytotoxic effects upon their hosts during feeding, directly inducing physiological and metabolic alterations and accompanying foliar damage. Comparative analyses of the salivary proteomes of four differentially virulent greenbug biotypes C, E, G, and H showed significant proteomic divergence between biotypes.

View Article and Find Full Text PDF

Three Diuraphis species, Diuraphis frequens (Walker), Diuraphis mexicana (McVicar Baker), and Diuraphis tritici (Gillette), were known to exist in the United States before the 1986 appearance of the Russian wheat aphid, Diuraphis noxia Kurdjumov. The Russian wheat aphid soon became a significant pest of wheat although other endemic Diuraphis species were known to infest wheat. Wheat and barley entries resistant and susceptible to Russian wheat aphid biotype 2 were evaluated against all four Diuraphis species to determine their host interrelationships.

View Article and Find Full Text PDF

Diuraphis noxia, Russian Wheat Aphid (RWA), biotypes are classified by their differential virulence to wheat varieties containing resistance genes. RWA salivary proteins, unlike those of most aphid species, cause foliar damage and physiological alterations in plants. A comparative proteomic analysis of secreted saliva from four differentially virulent RWA biotypes identified thirty-four individual proteins.

View Article and Find Full Text PDF

Aphid (Hemiptera: Aphididae) saliva, when injected into host plants during feeding, causes physiological changes in hosts that facilitate aphid feeding and cause injury to plants. Comparing salivary constituents among aphid species could help identify which salivary products are universally important for general aphid feeding processes, which products are involved with specific host associations, or which products elicit visible injury to hosts. We compared the salivary proteins from five aphid species, namely, Diuraphis noxia (Kurdjumov), D.

View Article and Find Full Text PDF

The Russian wheat aphid, Diuraphis noxia Kurdjumov, is an introduced species first identified in 1986 into the United States. It has since become a major pest of wheat, Triticum aestivum L., and other small grains in the western United States.

View Article and Find Full Text PDF

The Russian wheat aphid, Diruaphis noxia (Kudjumov) (Hemiptera: Aphididae), is globally one of the most devastating pests of bread wheat, Tritium aestivum L., durum wheat, Triticum turgidum L., and barley, Hordeum vulgare L.

View Article and Find Full Text PDF

Apple maggot, Rhagoletis pomonella (Walsh) (Diptera: Tephritidae), is a key pest in apple (Malus spp.) production areas located in the northeastern and midwestern United States and the eastern provinces of Canada. The development of Surround WP has offered a new approach for controlling apple maggot and other tephritid species, because this material is considered to be compatible with advanced integrated pest management and organic production systems.

View Article and Find Full Text PDF

Salivary secretions play critical roles in aphid-host plant interactions and are responsible for damage associated with aphid feeding. The objectives of this study were to evaluate aspects of salivation and the salivary constituents of Diuraphis noxia (Hemiptera: Aphididae). Salivary proteins were isolated and compared from three aphid probed diets: pure water, 15% sucrose, or amino acids (100 mM serine, 100 mM methionine, 100 mM aspartic acid, and 15% sucrose).

View Article and Find Full Text PDF

The Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Hemiptera: Aphididae), is a serious wheat, Triticum aestivum L., and barley, Hordeum vulgare L., pest throughout the small grain-producing areas in the western United States.

View Article and Find Full Text PDF

The biotypic diversity of the Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Hemiptera: Aphididae), was assessed in five isolates collected in Colorado. Three isolates, RWA 1, RWA 2, and an isolate from Montezuma County, CO, designated RWA 6, were originally collected from cultivated wheat, Triticum aestivum L., and obtained from established colonies at Colorado State University.

View Article and Find Full Text PDF

Wheat, Triticum aestivum L., with Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Hemiptera: Aphididae) resistance based on the Dn4 gene has been important in managing Russian wheat aphid since 1994. Recently, five biotypes (RWA1-RWA5) of this aphid have been described based on their ability to differentially damage RWA resistance genes in wheat.

View Article and Find Full Text PDF

The Russian wheat aphid, Diuraphis noxia (Mordvilko) (Homoptera: Aphididae), has been a major economic pest of small grains in the western United States since its introduction in 1986. Recently, a new Russian wheat aphid biotype was discovered in southeastern Colorado that damaged previously resistant wheat, Triticum aestivum L. Biotype development jeopardizes the durability of plant resistance, which has been a cornerstone for Russian wheat aphid management.

View Article and Find Full Text PDF

Particle films with different properties have been developed for arthropod pest control. Two basic film types are hydrophobic and hydrophilic films. The hydrophilic film formulations differ in the amount and kind of spreader-sticker that is incorporated into the kaolin particles.

View Article and Find Full Text PDF

The sweetpotato whitefly, Bemisia tabaci (Gennadius), B biotype, presents a unique problem for vegetable growers by serving as a vector of plant viruses and by inducing physiological disorders of leaves and fruit. An action threshold of a single whitefly is necessary because of the threat of disease in many areas and growers rely heavily on a single class of insecticides (neonicotinoids) for whitefly control. Additional control methods are needed to manage this pest in commercial vegetables.

View Article and Find Full Text PDF

Asian citrus psylla, Diaphorina citri Kuwayama (Homoptera: Psyllidae) was detected for the first time in the United States near Delray Beach, FL, on 2 June 1998 and is continuing to spread and multiply throughout southern Florida. This psyllid is the vector of Liberobacter asiaticum, a phloem-limited bacterium that causes citrus greening disease. This pathogen has not been found in the Western Hemisphere to date.

View Article and Find Full Text PDF

Synthetic sugar esters are a relatively new class of insecticidal compounds that are produced by reacting sugars with fatty acids. The objective of this research was to determine how systematic alterations in sugar or fatty acid components of sugar ester compounds influenced their insecticidal properties. Sucrose octanoate, sorbitol octanoate, sorbitol decanoate, sorbitol caproate, xylitol octanoate, xylitol decanoate and xylitol dodecanoate were synthesized and evaluated against a range of arthropod pests.

View Article and Find Full Text PDF

The biology and behavior of pear psylla, Cacopsylla pyricola Foerster, on a transgenic clone of 'Bartlett' pear, Pyrus communis L., containing a synthetic antimicrobial gene, D5C1, was compared with that of a nontransgenic parental clone to determine whether there were any nontarget effects. The gene construct also contained the marker gene nptII (aminoglycoside 3'-phosphotransferase II) that encodes for antibiotic resistance to identify transformed plants.

View Article and Find Full Text PDF