Extensive knowledge has been gained on the transcription network controlled by ERα, however, the mechanism underlying ESR1 (encoding ERα) expression is less understood. We recently discovered that the Hippo pathway is required for the proper expression of ESR1. YAP/TAZ are transcription coactivators that are phosphorylated and inhibited by the Hippo pathway kinase LATS.
View Article and Find Full Text PDFConventional antibody-drug conjugates (ADCs) are heterogeneous mixtures of chemically distinct molecules that vary in both drugs/antibody (DAR) and conjugation sites. Suboptimal properties of heterogeneous ADCs have led to new site-specific conjugation methods for improving ADC homogeneity. Most site-specific methods require extensive antibody engineering to identify optimal conjugation sites and introduce unique functional groups for conjugation with appropriately modified linkers.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2013
Alzheimer's disease (AD) is a devastating neurodegenerative disease affecting millions of people. β-Secretase-1 (BACE-1), an enzyme involved in the processing of the amyloid precursor protein (APP) to form Aβ, is a well validated target for AD. Herein, the authors characterize 10 randomly selected hydroxyethylamine (HEA) BACE-1 inhibitors in terms of their association and dissociation rate constants and thermodynamics of binding using surface plasmon resonance (SPR).
View Article and Find Full Text PDFThe structure activity relationship of the prime region of conformationally restricted hydroxyethylamine (HEA) BACE inhibitors is described. Variation of the P1' region provided selectivity over Cat-D with a series of 2,2-dioxo-isothiochromanes and optimization of the P2' substituent of chromane-HEA(s) with polar substituents provided improvements in the compound's in vitro permeability. Significant potency gains were observed with small aliphatic substituents such as methyl, n-propyl, and cyclopropyl when placed at the C-2 position of the chromane.
View Article and Find Full Text PDFHerein, we describe our strategy to design metabolically stable γ-secretase inhibitors which are selective for inhibition of Aβ generation over Notch. We highlight our synthetic strategy to incorporate diversity and chirality. Compounds 30 (ELND006) and 34 (ELND007) both entered human clinical trials.
View Article and Find Full Text PDFThe structure-activity relationship of a series of dihydroisoquinoline BACE-1 inhibitors is described. Application of structure-based design to screening hit 1 yielded sub-micromolar inhibitors. Replacement of the carboxylic acid of 1 was guided by X-ray crystallography, which allowed the replacement of a key water-mediated hydrogen bond.
View Article and Find Full Text PDFLeucine-rich repeat kinase 2 (LRRK2) has been implicated in the pathogenesis of Parkinson's disease (PD). Inhibition of LRRK2 kinase activity is a therapeutic approach that may lead to new treatments for PD. Herein we report the discovery of a series of [1,2,4]triazolo[4,3-b]pyridazines that are potent against both wild-type and mutant LRRK2 kinase activity in biochemical assays and show an unprecedented selectivity towards the G2019S mutant.
View Article and Find Full Text PDFMutations in leucine-rich repeat kinase 2 (LRRK2) are associated with familial Parkinson's disease (PD). The kinase activity of this complex protein is increased by pathogenic mutations. Inhibition of LRRK2 kinase activity has therefore emerged as a promising approach for the treatment of PD.
View Article and Find Full Text PDFStructure-activity relationship (SAR) of a novel, potent and metabolically stable series of benzo [3.2.1] bicyclic sulfonamide-pyrazoles as γ-secretase inhibitors are described.
View Article and Find Full Text PDFLeucine rich repeat kinase 2 (LRRK2) has been implicated in the pathogenesis of Parkinson's disease (PD). Inhibition of LRRK2 kinase activity is a therapeutic approach that may lead to new treatments for PD. Herein we report the discovery of a series of cinnoline-3-carboxamides that are potent against both wild-type and mutant LRRK2 kinase activity in biochemical assays.
View Article and Find Full Text PDFExpert Opin Ther Pat
May 2012
Introduction: Alzheimer's disease is a devastating neurodegenerative disorder for which no disease-modifying therapy exists. The amyloid hypothesis, which implicates Aβ as the toxin initiating a biological cascade leading to neurodegeneration, is the most prominent theory concerning the underlying cause of the disease. BACE1 is one of two aspartyl proteinases that generate Aβ, thus inhibition of BACE1 has the potential to ameliorate the progression of Alzheimer's disease by abating the production of Aβ.
View Article and Find Full Text PDFThe structure-activity relationship (SAR) of a novel, potent and metabolically stable series of sulfonamide-pyrazoles that attenuate β-amyloid peptide synthesis via γ-secretase inhibition is detailed herein. Sulfonamide-pyrazoles that are efficacious in reducing the cortical Aβx-40 levels in FVB mice via a single PO dose, as well as sulfonamide-pyrazoles that exhibit selectivity for inhibition of APP versus Notch processing by γ-secretase, are highlighted.
View Article and Find Full Text PDFThe SAR of a series of brain penetrant, trisubstituted thiophene based JNK inhibitors with improved pharmacokinetic properties is described. These compounds were designed based on information derived from metabolite identification studies which led to compounds such as 42 with lower clearance, greater brain exposure and longer half life compared to earlier analogs.
View Article and Find Full Text PDFThe SAR of a series of tri-substituted thiophene JNK3 inhibitors is described. By optimizing both the N-aryl acetamide region of the inhibitor and the 4-position of the thiophene we obtained single digit nanomolar compounds, such as 47, which demonstrated an in vivo effect on JNK activity when dosed orally in our kainic acid mouse model as measured by phospho-c-jun reduction.
View Article and Find Full Text PDFIn this Letter, we describe the discovery of selective JNK2 and JNK3 inhibitors, such as 10, that routinely exhibit >10-fold selectivity over JNK1 and >1000-fold selectivity over related MAPKs, p38α and ERK2. Substitution of the naphthalene ring affords an isoform selective JNK3 inhibitor, 30, with approximately 10-fold selectivity over both JNK1 and JNK2. A naphthalene ring penetrates deep into the selectivity pocket accounting for the differentiation amongst the kinases.
View Article and Find Full Text PDFBioorg Med Chem Lett
December 2010
From high throughput screening, we discovered compound 1, the prototype for a series of disubstituted thiophene inhibitors of JNK which is selective towards closely related MAP kinases p38 and Erk2. Herein we describe the evolution of these compounds to a novel class of thiophene and thiazole JNK inhibitors that retain favorable solubility, permeability, and P-gp properties for development as CNS agents for treatment of neurodegeneration. Compound 61 demonstrated JNK3 IC(50)=77 nM and retained the excellent broad kinase selectivity observed for the series.
View Article and Find Full Text PDFIn this Letter, we describe our efforts to design HEA BACE-1 inhibitors that are highly permeable coupled with negligible levels of permeability-glycoprotein activity. These efforts culminate in producing 16 which lowers Αβ by 28% and 32% in the cortex and CSF, respectively, in the preclinical wild type Hartley guinea pig animal model when dosed orally at 30mpk BID for 2.5days.
View Article and Find Full Text PDFThe structure-activity relationship of the prime region of hydroxyethylamine BACE inhibitors is described. Variation in the aryl linker region with 5- and 6-membered heterocycles provided compounds such as 33 with improved permeability and reduced P-gp liability compared to benzyl amine analog 1.
View Article and Find Full Text PDFHerein we describe further evolution of hydroxyethylamine inhibitors of BACE-1 with enhanced permeability characteristics necessary for CNS penetration. Variation at the P2' position of the inhibitor with more polar substituents led to compounds 19 and 32, which retained the potency of more lipophilic analog 1 but with much higher observed passive permeability in MDCK cellular assay.
View Article and Find Full Text PDFBioorg Med Chem Lett
December 2009
The structural modification of a series of [3.3.1] bicyclic sulfonamide based gamma-secretase inhibitors is described.
View Article and Find Full Text PDFUsing structure-guided design, hydroxyethylamine BACE-1 inhibitors were optimized to nanomolar Abeta cellular inhibition with selectivity against cathepsin-D. X-ray crystallography illuminated the S1' residues critical to this effort, which culminated in compounds 56 and 57 that exhibited potency and selectivity but poor permeability and high P-gp efflux.
View Article and Find Full Text PDFIn this Letter, we report our strategy to design potent and metabolically stable gamma-secretase inhibitors that are efficacious in reducing the cortical Abetax-40 levels in FVB mice via a single PO dose.
View Article and Find Full Text PDFSystematic SAR studies of in vitro factor Xa inhibitory activity around compound 1 were performed by modifying each of the three phenyl rings. A class of highly potent, selective, efficacious and orally bioavailable direct factor Xa inhibitors was discovered. These compounds were screened in hERG binding assays to examine the effects of substitution groups on the hERG channel affinity.
View Article and Find Full Text PDFThe discovery and optimization of nonbonded interactions, such as van der Waals interactions, hydrogen bonds, salt bridges and the hydrophobic effect, between small molecule ligands and their receptors is one of the main challenges in rational drug discovery. As the theory of molecular interactions advances more evidence accumulates that nonbonded interactions, such as unconventional hydrogen bonds (X-H..
View Article and Find Full Text PDFNovel strategies are developed for an efficient formal synthesis of (-)-mycalamide A. The left-hand side (-)-7-benzoylpederic acid is synthesized from (2S,3S)-2,3-epoxybutane. The key features include a highly regioselective Ru-catalyzed alkene-alkyne coupling reaction and a novel way to control the challenging C(7) stereocenter.
View Article and Find Full Text PDF