Alpha-synuclein (αS)-rich Lewy bodies and neurites in the cerebral cortex correlate with the presence of dementia in Parkinson disease (PD) and Dementia with Lewy bodies (DLB), but whether αS influences synaptic vesicle dynamics in human cortical neurons is unknown. Using a new iPSC-based assay platform for measuring synaptic vesicle cycling, we found that in human cortical glutamatergic neurons, increased αS from either transgenic expression or triplication of the endogenous locus in patient-derived neurons reduced synaptic vesicle cycling under both stimulated and spontaneous conditions. Thus, using a robust, easily adopted assay platform, we show for the first time αS-induced synaptic dysfunction in human cortical neurons, a key cellular substrate for PD dementia and DLB.
View Article and Find Full Text PDFParkinson's disease (PD) is characterized by conversion of soluble α-synuclein (αS) into intraneuronal aggregates and degeneration of neurons and neuronal processes. Indications that women with early-stage PD display milder neurodegenerative features suggest that female sex partially protects against αS pathology. We previously reported that female sex and estradiol improved αS homeostasis and PD-like phenotypes in E46K-amplified (3K) αS mice.
View Article and Find Full Text PDFSynaptotagmin-11 (Syt11) is a vesicle-trafficking protein that is linked genetically to Parkinson's disease (PD). Likewise, the protein α-synuclein regulates vesicle trafficking, and its abnormal aggregation in neurons is the defining cytopathology of PD. Because of their functional similarities in the same disease context, we investigated whether the two proteins were connected.
View Article and Find Full Text PDFSynucleinopathy (Parkinson's disease (PD); Lewy body dementia) disease-modifying treatments represent a huge unmet medical need. Although the PD-causing protein α-synuclein (αS) interacts with lipids and fatty acids (FA) physiologically and pathologically, targeting FA homeostasis for therapeutics is in its infancy. We identified the PD-relevant target stearoyl-coA desaturase: inhibiting monounsaturated FA synthesis reversed PD phenotypes.
View Article and Find Full Text PDFBackground: Synucleinopathies, including Parkinson's disease (PD), are characterized by α-synuclein (αS) cytoplasmic inclusions. αS-dependent vesicle-trafficking defects are important in PD pathogenesis, but their mechanisms are not well understood. Protein palmitoylation, post-translational addition of the fatty acid palmitate to cysteines, promotes trafficking by anchoring specific proteins to the vesicle membrane.
View Article and Find Full Text PDFGenetic and biochemical evidence attributes neuronal loss in Parkinson's disease (PD) and related brain diseases to dyshomeostasis of the 14 kDa protein α-synuclein (αS). There is no consensus on how αS exerts toxicity. Explanations range from disturbed vesicle biology to proteotoxicity caused by fibrillar aggregates.
View Article and Find Full Text PDFMicroscopy of Lewy bodies in Parkinson's disease (PD) suggests they are not solely filamentous deposits of α-synuclein (αS) but also contain vesicles and other membranous material. We previously reported the existence of native αS tetramers/multimers and described engineered mutations of the αS KTKEGV repeat motifs that abrogate the multimers. The resultant excess monomers accumulate in lipid membrane-rich inclusions associated with neurotoxicity exceeding that of natural familial PD mutants, such as E46K.
View Article and Find Full Text PDFIn Parkinson's disease (PD), α-synuclein (αS) pathologically impacts the brain, a highly lipid-rich organ. We investigated how alterations in αS or lipid/fatty acid homeostasis affect each other. Lipidomic profiling of human αS-expressing yeast revealed increases in oleic acid (OA, 18:1), diglycerides, and triglycerides.
View Article and Find Full Text PDFPSD-95, a principal scaffolding component of the postsynaptic density, is targeted to synapses by palmitoylation, where it couples NMDA receptor stimulation to production of nitric oxide (NO) by neuronal nitric oxide synthase (nNOS). Here, we show that PSD-95 is physiologically S-nitrosylated. We identify cysteines 3 and 5, which are palmitoylated, as sites of nitrosylation, suggesting a competition between these two modifications.
View Article and Find Full Text PDFSerine racemase (SR) generates D-serine, a coagonist with glutamate at NMDA receptors. We show that SR is physiologically S-nitrosylated leading to marked inhibition of enzyme activity. Inhibition involves interactions with the cofactor ATP reflecting juxtaposition of the ATP-binding site and cysteine-113 (C113), the site for physiological S-nitrosylation.
View Article and Find Full Text PDFThe Fanconi anemia (FA) pathway is a DNA damage-activated signaling pathway which regulates cellular resistance to DNA cross-linking agents. Cloned FA genes and proteins cooperate in this pathway, and monoubiquitination of FANCD2 is a critical downstream event. The cell cycle checkpoint kinase ATR is required for the efficient monoubiquitination of FANCD2, while another checkpoint kinase, ATM, directly phosphorylates FANCD2 and controls the ionizing radiation (IR)-inducible intra-S-phase checkpoint.
View Article and Find Full Text PDFThe cellular response to DNA damage is composed of cell cycle checkpoint and DNA repair mechanisms that serve to ensure proper replication of the genome prior to cell division. The function of the DNA damage response during DNA replication in S-phase is critical to this process. Recent evidence has suggested a number of interrelationships of DNA replication and cellular DNA damage responses.
View Article and Find Full Text PDF