Protein-DNA interactions play an important role in numerous biological functions within the living cell. In many of these interactions, the DNA helix is significantly distorted upon protein-DNA complex formation. The I restriction-modification system is one such system, where the methylation target is flipped out of the helix when bound to the methyltransferase.
View Article and Find Full Text PDFDipeptides, which consist of two amino acids joined by a peptide bond, have been shown to have catalytic functions. This observation leads to fundamental questions relevant to the origin of life. How could peptides have become colocalized with the first protocells? Which structural features would have determined the association of amino acids and peptides with membranes? Could the association of dipeptides with protocell membranes have driven molecular evolution, favoring dipeptides over individual amino acids? Using pulsed-field gradient nuclear magnetic resonance, we find that several prebiotic amino acids and dipeptides bind to prebiotic membranes.
View Article and Find Full Text PDFThe unmodified R5 peptide from silaffin in the diatom Cylindrotheca fusiformis rapidly precipitates silica particles from neutral aqueous solutions of orthosilicic acid. A range of post-translational modifications found in R5 contribute toward tailoring silica morphologies in a species-specific manner. We investigated the specific effect of R5 lysine side-chain trimethylation, which adds permanent positive charges, on silica particle formation.
View Article and Find Full Text PDFA major challenge in understanding how biological cells arose on the early Earth is explaining how RNA and membranes originally colocalized. We propose that the building blocks of RNA (nucleobases and ribose) bound to self-assembled prebiotic membranes. We have previously demonstrated that the bases bind to membranes composed of a prebiotic fatty acid, but evidence for the binding of sugars has remained a technical challenge.
View Article and Find Full Text PDFInterpreting dynamics in solid-state molecular systems requires characterization of the potentially heterogeneous environmental contexts of molecules. In particular, the analysis of solid-state nuclear magnetic resonance (ssNMR) data to elucidate molecular dynamics (MD) involves modeling the restriction to overall tumbling by neighbors, as well as the concentrations of water and buffer. In this exploration of the factors that influence motion, we utilize atomistic MD trajectories of peptide aggregates with varying hydration to mimic an amorphous solid-state environment and predict ssNMR relaxation rates.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2019
The membranes of the first protocells on the early Earth were likely self-assembled from fatty acids. A major challenge in understanding how protocells could have arisen and withstood changes in their environment is that fatty acid membranes are unstable in solutions containing high concentrations of salt (such as would have been prevalent in early oceans) or divalent cations (which would have been required for RNA catalysis). To test whether the inclusion of amino acids addresses this problem, we coupled direct techniques of cryoelectron microscopy and fluorescence microscopy with techniques of NMR spectroscopy, centrifuge filtration assays, and turbidity measurements.
View Article and Find Full Text PDFElucidation of the structure and interactions of proteins at native mineral interfaces is key to understanding how biological systems regulate the formation of hard tissue structures. In addition, understanding how these same proteins interact with non-native mineral surfaces has important implications for the design of medical and dental implants, chromatographic supports, diagnostic tools, and a host of other applications. Here, we combine solid-state NMR spectroscopy, isotherm measurements, and molecular dynamics simulations to study how SNa15, a peptide derived from the hydroxyapatite (HAP) recognition domain of the biomineralization protein statherin, interacts with HAP, silica (SiO), and titania (TiO) mineral surfaces.
View Article and Find Full Text PDFA biomimetic approach to the formation of titania (TiO) nanostructures is desirable because of the mild conditions required in this form of production. We have identified a series of serine-lysine peptides as candidates for the biomimetic production of TiO nanostructures. We have assayed these peptides for TiO-precipitating activity upon exposure to titanium bis(ammonium lactato)dihydroxide and have characterized the resulting coprecipitates using scanning electron microscopy.
View Article and Find Full Text PDFA biomimetic, peptide-mediated approach to inorganic nanostructure formation is of great interest as an alternative to industrial production methods. To investigate the role of peptide structure on silica (SiO) and titania (TiO) morphologies, we use the R5 peptide domain derived from the silaffin protein to produce uniform SiO and TiO nanostructures from the precursor silicic acid and titanium bis(ammonium lactato)dihydroxide, respectively. The resulting biosilica and biotitania nanostructures are characterized using scanning electron microscopy.
View Article and Find Full Text PDFIn nature, organisms including diatoms, radiolaria, and marine sponges use proteins, long chain polyamines, and other organic molecules to regulate the assembly of complex silica-based structures. Here, the authors investigate structural features of small peptides, designed to mimic the silicifying activities of larger proteins found in natural systems. LKα14 (Ac-LKKLLKLLKKLLKL-C), an amphiphilic lysine/leucine repeat peptide with an α-helical secondary structure at polar/apolar interfaces, coprecipitates with silica to form nanospheres.
View Article and Find Full Text PDFAdsorption isotherms, circular dichroism (CD) spectroscopy, x-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were used to investigate the adsorption of human osteocalcin (hOC) and decarboxylated (i.e., Gla converted back to Glu) hOC (dhOC) onto various calcium phosphate surfaces as well as silica surfaces.
View Article and Find Full Text PDFIntrinsic motions may allow HIV-1 transactivation response (TAR) RNA to change its conformation to form a functional complex with the Tat protein, which is essential for viral replication. Understanding the dynamic properties of TAR necessitates determining motion on the intermediate nanosecond-to-microsecond time scale. To this end, we performed solid-state deuterium NMR line-shape and T relaxation-time experiments to measure intermediate motions for two uridine residues, U40 and U42, within the lower helix of TAR.
View Article and Find Full Text PDFDiatoms are unicellular algae that construct cell walls called frustules by the precipitation of silica, using special proteins that order the silica into a wide variety of nanostructures. The diatom species Cylindrotheca fusiformis contains proteins called silaffins within its frustules, which are believed to assemble into supramolecular matrices that serve as both accelerators and templates for silica deposition. Studying the properties of these biosilicification proteins has allowed the design of new protein and peptide systems that generate customizable silica nanostructures, with potential generalization to other mineral systems.
View Article and Find Full Text PDFSilaffins, long chain polyamines, and other biomolecules found in diatoms are involved in the assembly of a large number of silica nanostructures under mild, ambient conditions. Nanofabrication researchers have sought to mimic the diatom's biosilica production capabilities by engineering proteins to resemble aspects of naturally occurring biomolecules. Such mimics can produce monodisperse biosilica nanospheres, but in vitro production of the variety of intricate biosilica nanostructures that compose the diatom frustule is not yet possible.
View Article and Find Full Text PDFExtracellular matrix proteins adsorbed onto mineral surfaces exist in a unique environment where the structure and dynamics of the protein can be altered profoundly. To further elucidate how the mineral surface impacts molecular properties, we perform a comparative study of the dynamics of nonpolar side chains within the mineral-recognition domain of the biomineralization protein salivary statherin adsorbed onto its native hydroxyapatite (HAP) mineral surface versus the dynamics displayed by the native protein in the hydrated solid state. Specifically, the dynamics of phenylalanine side chains (viz.
View Article and Find Full Text PDFThe use of biomimetic approaches in the production of inorganic nanostructures is of great interest to the scientific and industrial community due to the relatively moderate physical conditions needed. In this vein, taking cues from silaffin proteins used by unicellular diatoms, several studies have identified peptide candidates for the production of silica nanostructures. In the current article, we study intensively one such silica-precipitating peptide, LKα14 (Ac-LKKLLKLLKKLLKL-c), an amphiphilic lysine/leucine repeat peptide that self-organizes into an α-helical secondary structure under appropriate concentration and buffer conditions.
View Article and Find Full Text PDFComplex RNA structures are constructed from helical segments connected by flexible loops that move spontaneously and in response to binding of small molecule ligands and proteins. Understanding the conformational variability of RNA requires the characterization of the coupled time evolution of interconnected flexible domains. To elucidate the collective molecular motions and explore the conformational landscape of the HIV-1 TAR RNA, we describe a new methodology that utilizes energy-minimized structures generated by the program "Fragment Assembly of RNA with Full-Atom Refinement (FARFAR)".
View Article and Find Full Text PDFSolid state NMR can provide detailed structural and dynamic information on biological systems that cannot be studied under solution conditions, and can investigate motions which occur with rates that cannot be fully studied by solution NMR. This approach has successfully been used to study proteins, but the application of multidimensional solid state NMR to RNA has been limited because reported line widths have been too broad to execute most multidimensional experiments successfully. A reliable method to generate spectra with narrow line widths is necessary to apply the full range of solid state NMR spectroscopic approaches to RNA.
View Article and Find Full Text PDFExtracellular biomineralization proteins such as salivary statherin control the growth of hydroxyapatite (HAP), the principal component of teeth and bones. Despite the important role that statherin plays in the regulation of hard tissue formation in humans, the surface recognition mechanisms involved are poorly understood. The protein-surface interaction likely involves very specific contacts between the surface atoms and the key protein side chains.
View Article and Find Full Text PDFFormation of the complex between human immunodeficiency virus type-1 Tat protein and the transactivation response region (TAR) RNA is vital for transcriptional elongation, yet the structure of the Tat-TAR complex remains to be established. The NMR structures of free TAR, and TAR bound to Tat-derived peptides have been obtained by solution NMR, but only a small number of intermolecular NOEs could be identified unambiguously, preventing the determination of a complete structure. Here we show that a combination of multiple solid state NMR REDOR experiments can be used to obtain multiple distance constraints from (15)N to (13)C spins within the backbone and side chain guanidinium groups of arginine in a Tat-derived peptide, using (19)F spins incorporated into the base of U23 in TAR and (31)P spins in the P22 and P23 phosphate groups.
View Article and Find Full Text PDFSolution NMR spectroscopy can elucidate many features of the structure and dynamics of macromolecules, yet relaxation measurements, the most common source of experimental information on dynamics, can sample only certain ranges of dynamic rates. A complete characterization of motion of a macromolecule thus requires the introduction of complementary experimental approaches. Solid-state NMR spectroscopy successfully probes the time scale of nanoseconds to microseconds, a dynamic window where solution NMR results have been deficient, and probes conditions where the averaging effects of rotational diffusion of the molecule are absent.
View Article and Find Full Text PDFLKα14 is a 14 amino acid peptide with a periodic sequence of leucine and lysine residues consistent with an amphipathic α-helix. This "hydrophobic periodicity" has been found to result in an α-helical secondary structure at air-water interfaces and on both polar and nonpolar solid polymer surfaces. In this paper, the dynamics of LKα14 peptides, selectively deuterated at a single leucine and adsorbed onto polystyrene and carboxylated polystyrene beads, are studied using (2)H magic angle spinning (MAS) solid state NMR over a 100 °C temperature range.
View Article and Find Full Text PDFProtein-biomineral interactions are paramount to materials production in biology, including the mineral phase of hard tissue. Unfortunately, the structure of biomineral-associated proteins cannot be determined by X-ray crystallography or solution nuclear magnetic resonance (NMR). Here we report a method for determining the structure of biomineral-associated proteins.
View Article and Find Full Text PDFThe complex of the HIV TAR RNA with the viral regulatory protein Tat is of considerable interest, but the plasticity of this interaction has made it impossible so far to establish the structure of that complex. In order to explore a new approach to obtain structural information on protein-RNA complexes, we performed (13)C/(15)N-(19)F REDOR NMR experiments in the solid state on TAR bound to a peptide comprising the RNA-binding section of Tat. A critical arginine in the peptide was uniformly (13)C and (15)N labeled, and 5-fluorouridine was incorporated at the U23 position of TAR.
View Article and Find Full Text PDF