Publications by authors named "Gary Olsen"

The National Institute of Allergy and Infectious Diseases (NIAID) established the Bioinformatics Resource Center (BRC) program to assist researchers with analyzing the growing body of genome sequence and other omics-related data. In this report, we describe the merger of the PAThosystems Resource Integration Center (PATRIC), the Influenza Research Database (IRD) and the Virus Pathogen Database and Analysis Resource (ViPR) BRCs to form the Bacterial and Viral Bioinformatics Resource Center (BV-BRC) https://www.bv-brc.

View Article and Find Full Text PDF

The PathoSystems Resource Integration Center (PATRIC) is the bacterial Bioinformatics Resource Center funded by the National Institute of Allergy and Infectious Diseases (https://www.patricbrc.org).

View Article and Find Full Text PDF

Sulfolobus islandicus is a model microorganism in the TACK superphylum of the Archaea, a key lineage in the evolutionary history of cells. Here we report a genome-wide identification of the repertoire of genes essential to S. islandicus growth in culture.

View Article and Find Full Text PDF

The Pathosystems Resource Integration Center (PATRIC, www.patricbrc.org) is designed to provide researchers with the tools and services that they need to perform genomic and other 'omic' data analyses.

View Article and Find Full Text PDF

The Pathosystems Resource Integration Center (PATRIC) is the bacterial Bioinformatics Resource Center (https://www.patricbrc.org).

View Article and Find Full Text PDF

Introduction: We have comprehensively described the expression profiles of mitochondrial DNA and nuclear DNA genes that encode subunits of the respiratory oxidative phosphorylation (OXPHOS) complexes (I-V) in the hippocampus from young controls, age matched, mild cognitively impaired (MCI), and Alzheimer's disease (AD) subjects.

Methods: Hippocampal tissues from 44 non-AD controls (NC), 10 amnestic MCI, and 18 AD cases were analyzed on Affymetrix Hg-U133 plus 2.0 arrays.

View Article and Find Full Text PDF

The ability to build accurate protein families is a fundamental operation in bioinformatics that influences comparative analyses, genome annotation, and metabolic modeling. For several years we have been maintaining protein families for all microbial genomes in the PATRIC database (Pathosystems Resource Integration Center, patricbrc.org) in order to drive many of the comparative analysis tools that are available through the PATRIC website.

View Article and Find Full Text PDF

The large repABC plasmids of the order Rhizobiales with Class I quorum-regulated conjugative transfer systems often define the nature of the bacterium that harbors them. These otherwise diverse plasmids contain a core of highly conserved genes for replication and conjugation raising the question of their evolutionary relationships. In an analysis of 18 such plasmids these elements fall into two organizational classes, Group I and Group II, based on the sites at which cargo DNA is located.

View Article and Find Full Text PDF

The Salmonella enterica serovars Enteritidis, Dublin, and Gallinarum are closely related but differ in virulence and host range. To identify the genetic elements responsible for these differences and to better understand how these serovars are evolving, we sequenced the genomes of Enteritidis strain LK5 and Dublin strain SARB12 and compared these genomes to the publicly available Enteritidis P125109, Dublin CT 02021853 and Dublin SD3246 genome sequences. We also compared the publicly available Gallinarum genome sequences from biotype Gallinarum 287/91 and Pullorum RKS5078.

View Article and Find Full Text PDF

The RAST (Rapid Annotation using Subsystem Technology) annotation engine was built in 2008 to annotate bacterial and archaeal genomes. It works by offering a standard software pipeline for identifying genomic features (i.e.

View Article and Find Full Text PDF

Maintaining consistency in genome annotations is important for supporting many computational tasks, particularly metabolic modeling. The SEED project has implemented a process that improves annotation consistencies across microbial genomes for proteins with conserved sequences and genomic context. In this research report, we describe this process and show how this effort has resulted in improvements to microbial genome annotations in the SEED.

View Article and Find Full Text PDF

The Ti plasmid in Agrobacterium tumefaciens strain 15955 carries two alleles of traR that regulate conjugative transfer. The first is a functional allele, called traR, that is transcriptionally induced by the opine octopine. The second, trlR, is a nonfunctional, dominant-negative mutant located in an operon that is inducible by the opine mannopine (MOP).

View Article and Find Full Text PDF

In 2004, the SEED (http://pubseed.theseed.org/) was created to provide consistent and accurate genome annotations across thousands of genomes and as a platform for discovering and developing de novo annotations.

View Article and Find Full Text PDF
Article Synopsis
  • - The study examined 12 concussed high school football players and their healthy teammates, assessing symptoms, balance, cognition, and brain activity during a working memory task at two time points: 13 hours and 7 weeks post-injury.
  • - Initially, concussed athletes demonstrated typical symptoms and cognitive impairment, but showed significant recovery in both symptoms and cognitive performance by the 7-week mark.
  • - Brain imaging indicated reduced activation in right hemisphere attentional networks right after the concussion, but increased activation in those networks was observed at 7 weeks, correlating with improved cognitive function and symptom relief.
View Article and Find Full Text PDF

The tree of life is paramount for achieving an integrated understanding of microbial evolution and the relationships between physiology, genealogy and genomics. It provides the framework for interpreting environmental sequence data, whether applied to microbial ecology or to human health. However, there remain many instances where there is ambiguity in our understanding of the phylogeny of major lineages, and/or confounding nomenclature.

View Article and Find Full Text PDF

The remarkable advance in sequencing technology and the rising interest in medical and environmental microbiology, biotechnology, and synthetic biology resulted in a deluge of published microbial genomes. Yet, genome annotation, comparison, and modeling remain a major bottleneck to the translation of sequence information into biological knowledge, hence computational analysis tools are continuously being developed for rapid genome annotation and interpretation. Among the earliest, most comprehensive resources for prokaryotic genome analysis, the SEED project, initiated in 2003 as an integration of genomic data and analysis tools, now contains >5,000 complete genomes, a constantly updated set of curated annotations embodied in a large and growing collection of encoded subsystems, a derived set of protein families, and hundreds of genome-scale metabolic models.

View Article and Find Full Text PDF

Most bacterial and archaeal genomes contain many genes with little or no similarity to other genes, a property that impedes identification of gene origins. By comparing the codon usage of genes shared among strains (primarily vertically inherited genes) and genes unique to one strain (primarily recently horizontally acquired genes), we found that the plurality of unique genes in Escherichia coli and Salmonella enterica are much more similar to each other than are their vertically inherited genes. We conclude that E.

View Article and Find Full Text PDF

Humans and baboons (Papio spp.) share considerable anatomical and physiological similarities in their reproductive tracts. Given the similarities, it is reasonable to expect that the normal vaginal microbial composition (microbiota) of baboons would be similar to that of humans.

View Article and Find Full Text PDF

Codon usage can provide insights into the nature of the genes in a genome. Genes that are "native" to a genome (have not been recently acquired by horizontal transfer) range in codon usage from a low-bias "typical" usage to a more biased "high-expression" usage characteristic of genes encoding abundant proteins. Genes that differ from these native codon usages are candidates for foreign genes that have been recently acquired by horizontal gene transfer.

View Article and Find Full Text PDF

Background: The replication of DNA in Archaea and eukaryotes requires several ancillary complexes, including proliferating cell nuclear antigen (PCNA), replication factor C (RFC), and the minichromosome maintenance (MCM) complex. Bacterial DNA replication utilizes comparable proteins, but these are distantly related phylogenetically to their archaeal and eukaryotic counterparts at best.

Methodology/principal Findings: While the structures of each of the complexes do not differ significantly between the archaeal and eukaryotic versions thereof, the evolutionary dynamic in the two cases does.

View Article and Find Full Text PDF

Most genomes are heterogeneous in codon usage, so a codon usage study should start by defining the codon usage that is typical to the genome. Although this is commonly taken to be the genomewide average, we propose that the mode-the codon usage that matches the most genes-provides a more useful approximation of the typical codon usage of a genome. We provide a method for estimating the modal codon usage, which utilizes a continuous approximation to the number of matching genes and a simplex optimization.

View Article and Find Full Text PDF

Messenger RNA (mRNA) processing plays important roles in gene expression in all domains of life. A number of cases of mRNA cleavage have been documented in Archaea, but available data are fragmentary. We have examined RNAs present in Methanocaldococcus (Methanococcus) jannaschii for evidence of RNA processing upstream of protein-coding genes.

View Article and Find Full Text PDF

Although Methanocaldococcus (Methanococcus) jannaschii was the first archaeon to have its genome sequenced, little is known about the promoters of its protein-coding genes. To expand our knowledge, we have experimentally identified 131 promoters for 107 protein-coding genes in this genome by mapping their transcription start sites. Compared to previously identified promoters, more than half of which are from genes for stable RNAs, the protein-coding gene promoters are qualitatively similar in overall sequence pattern, but statistically different at several positions due to greater variation among their sequences.

View Article and Find Full Text PDF

Recent culture-independent studies have revealed that a healthy vaginal ecosystem harbors a surprisingly complex assemblage of microorganisms. However, the spatial distribution and composition of vaginal microbial populations have not been investigated using molecular methods. Here, we evaluated site-specific microbial composition within the vaginal ecosystem and examined the influence of sampling technique in detection of the vaginal microbiota.

View Article and Find Full Text PDF