The Human Toxicology Project Consortium (HTPC) was created to accelerate implementation of the science and policies required to achieve a pathway-based foundation for toxicology as articulated in the 2007 National Research Council report, Toxicity Testing in the 21st Century: a Vision and a Strategy. The HTPC held a workshop, "Building Shared Experience to Advance Practical Application of Pathway-Based Toxicology: Liver Toxicity Mode-of-Action," in January, 2013, in Baltimore, MD, to further the science of pathway-based approaches to liver toxicity. This review was initiated as a thought-starter for this workshop and has since been updated to include insights from the workshop and other activities occurring in 2013.
View Article and Find Full Text PDFA workshop sponsored by the Human Toxicology Project Consortium (HTPC), "Building Shared Experience to Advance Practical Application of Pathway-Based Toxicology: Liver Toxicity Mode-of-Action" brought together experts from a wide range of perspectives to inform the process of pathway development and to advance two prototype pathways initially developed by the European Commission Joint Research Center (JRC): liver-specific fibrosis and steatosis. The first half of the workshop focused on the theory and practice of pathway development; the second on liver disease and the two prototype pathways. Participants agreed pathway development is extremely useful for organizing information and found that focusing the theoretical discussion on a specific AOP is extremely helpful.
View Article and Find Full Text PDFThe REACH legislation introduced Derived No-Effect Levels (DNELs) which are defined as 'the levels of exposure above which humans should not be exposed'. DNELs were required for several categories of petroleum substances and CONCAWE developed a consistent approach for their derivation. First, the No-Observed Effect Level from a relevant study was corrected for pattern and route of exposure to obtain a modified Point-of-Departure (POD(modified)).
View Article and Find Full Text PDFA paving asphalt and a vacuum residuum (derived from crude oil by atmospheric and subsequent vacuum distillation and used as a blend stock for asphalt) were tested in skin carcinogenesis assays in mice and in optimized Ames assays for mutagenic activity. In the skin cancer tests, each substance was applied twice weekly for 104 weeks to the clipped backs of groups of 50 male C3H mice. Neither the paving asphalt nor the vacuum residuum (30% weight/volume and 75% weight/weight in US Pharmacopeia mineral oil, respectively) produced any tumors.
View Article and Find Full Text PDFAsphalt (bitumen) fume condensates collected from the headspace above paving and Type III built up roofing asphalt (BURA) tanks were evaluated in two-year dermal carcinogenicity assays in male C3H/HeNCrl mice. A third sample was generated from the BURA using a NIOSH laboratory generation method. Similar to earlier NIOSH studies, the BURA fume condensates were applied dermally in mineral oil twice per week; the paving sample was applied 7 days/week for a total weekly dose of 50 mg/wk in both studies.
View Article and Find Full Text PDFBifunctional alkylating agents (BFA) such as mechlorethamine (nitrogen mustard) and bis-(2-chloroethyl) sulfide (sulfur mustard; SM) covalently modify DNA and protein. The roles of nuclear factor kappaB (NF-kappaB) and p53, transcription factors involved in inflammatory and cell death signaling, were examined in normal human epidermal keratinocytes (NHEK) and immortalized HaCaT keratinocytes, a p53-mutated cell line, to delineate molecular mechanisms of action of BFA. NHEK and HaCaT cells exhibited classical NF-kappaB signaling as degradation of inhibitor protein of NF-kappaBalpha (IkappaBalpha) occurred within 5 min after exposure to tumor necrosis factor-alpha.
View Article and Find Full Text PDFWe delineate a mechanism by which dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin or TCDD)-mediated formation of the aryl hydrocarbon receptor (AhR) DNA binding complex is disrupted by a single mutation at the conserved AhR tyrosine 9. Replacement of tyrosine 9 with the structurally conservative phenylalanine (AhRY9F) abolished binding to dioxin response element (DRE) D, E, and A and abrogated DRE-driven gene induction mediated by the AhR with no effect on TCDD binding, TCDD-induced nuclear localization, or ARNT heterodimerization. The speculated role for phosphorylation at tyrosine 9 was also examined.
View Article and Find Full Text PDFTyrosine phosphorylation of the aryl hydrocarbon receptor (AhR), a member of the basic helix-loop-helix/PER-ARNT-SIM transcription factor family, has been shown to regulate its dioxin response elements (DRE) binding ability, although no specific residues have been directly demonstrated to be phosphorylated. Of the 23 tyrosines in the mouse AhR, 19 are conserved across all mammalian species sequenced thus far. The studies presented here were conducted to examine tyrosine residue(s) that are both likely candidates of phosphorylation and necessary for DNA binding and/or transcriptional activity of the AhR.
View Article and Find Full Text PDF