VEGF signaling via VEGF receptor-2 (VEGFR2) is a major regulator of endothelial cell (EC) functions, including angiogenesis. Although most studies of angiogenesis focus on soluble VEGF signaling, mechanical signaling also plays a critical role. Here, we examined the consequence of disruption of mechanical signaling on soluble signaling pathways.
View Article and Find Full Text PDFEndothelial cell proliferation is a critical event during angiogenesis, regulated by both soluble factors and mechanical forces. Although the proliferation of tumor cells is studied extensively, little is known about the proliferation of tumor endothelial cells (TEC) and its contribution to tumor angiogenesis. We have recently shown that reduced expression of the mechanosensitive ion channel TRPV4 in TEC causes aberrant mechanosensitivity that result in abnormal angiogenesis.
View Article and Find Full Text PDFDuring heightened cardiac work, O2 consumption by the heart benefits energy production via mitochondria. However, some electrons leak from the respiratory chain and yield superoxide, which is rapidly metabolized into H2O2 by SOD2. To understand the systemic effects of the metabolic dilator, H2O2, we studied mice with cardiac-specific SOD2 overexpression (SOD2-tg), which increases the H2O2 produced by cardiac mitochondria.
View Article and Find Full Text PDFDiabetes is an independent risk factor for cardiovascular disease that can eventually cause cardiomyopathy and heart failure. Cardiac fibroblasts (CF) are the critical mediators of physiological and pathological cardiac remodeling; however, the effects of hyperglycemia on cardiac fibroblast function and differentiation is not well known. Here, we performed a comprehensive investigation on the effects of hyperglycemia on cardiac fibroblasts and show that hyperglycemia enhances cardiac fibroblast function and differentiation.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
April 2014
Aminopeptidase-A (APA) is a less well-studied enzyme of the renin-angiotensin system. We propose that it is involved in cardiac angiotensin (ANG) metabolism and its pathologies. ANG-(1-7) can ameliorate remodeling after myocardial injury.
View Article and Find Full Text PDFDeep tissue wound healing requires a complex sequence of several factors working in unison to repair the organ at risk. Myocardial infarction (MI) is particularly complex due to several local and systemic factors mediating the repair process within the heart. The wound healing process during this time is critical-the cardiac myocytes are at risk of apoptotic cell death, autophagy, and necrosis.
View Article and Find Full Text PDFThe differentiation of cardiac fibroblasts to myofibroblasts is one of the key events during cardiac remodeling, however, the molecular mechanism underlying this process is not well known. Calcium signaling plays an important role in the regulation of cardiac fibroblast function, but its role in the differentiation of fibroblasts is undefined. Recently four Transient Receptor Potential (TRP) channels TRPM7, TRPC3, TRPC6 and TRPV4 were shown to be crucial for the differentiation of cardiac fibroblasts to myofibroblasts.
View Article and Find Full Text PDFAim: Living high training low" (LHTL) is an exercise-training protocol that refers living in hypoxia stress and training at normal level of O2. In this study, we investigated whether LHTL caused physiological heart hypertrophy accompanied by changes of biomarkers in renin-angiotensin system in rats.
Methods: Adult male SD rats were randomly assigned into 4 groups, and trained on living low-sedentary (LLS, control), living low-training low (LLTL), living high-sedentary (LHS) and living high-training low (LHTL) protocols, respectively, for 4 weeks.
The phenotypic switch underlying the differentiation of cardiac fibroblasts into hypersecretory myofibroblasts is critical for cardiac remodeling following myocardial infarction. Myofibroblasts facilitate wound repair in the myocardium by secreting and organizing extracellular matrix (ECM) during the wound healing process. However, the molecular mechanisms involved in myofibroblast differentiation are not well known.
View Article and Find Full Text PDFLiver cancer, predominantly hepatocellular carcinoma (HCC), represents a complex and fatal malignancy driven primarily by oxidative stress and inflammation. Due to dismal prognosis and limited therapeutic intervention, chemoprevention has emerged as a viable approach to reduce the morbidity and mortality of HCC. Pomegranate fruit is a rich source of phytochemicals endowed with potent antioxidant and anti-inflammatory properties.
View Article and Find Full Text PDFWe have previously shown transient receptor potential vanilloid subtype 1 (TRPV1) channel-dependent coronary function is compromised in pigs with metabolic syndrome (MetS). However, the mechanisms through which TRPV1 channels couple coronary blood flow to metabolism are not fully understood. We employed mice lacking TRPV1 [TRPV1((-/-))], db/db diabetic, and control C57BKS/J mice to determine the extent to which TRPV1 channels modulate coronary function and contribute to vascular dysfunction in diabetic cardiomyopathy.
View Article and Find Full Text PDFRationale: We previously reported that type VI collagen deposition increases in the infarcted myocardium in vivo. To date, a specific role for this nonfibrillar collagen has not been explored in the setting of myocardial infarction (MI).
Objective: To determine whether deletion of type VI collagen in an in vivo model of post-MI wound healing would alter cardiac function and remodeling in the days to weeks after injury.
Black currant fruits containing high amounts of anthocyanins are known to possess potent antioxidant and anti-inflammatory properties. We have previously reported that anthocyanin-rich black currant skin extract (BCSE) inhibits diethylnitrosamine (DENA)-initiated hepatocarcinogenesis in rats although the underlying mechanisms are not fully understood. Our present study investigates the anti-inflammatory mechanisms of BCSE during DENA rat liver carcinogenesis.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
September 2011
Transient receptor potential vanilliod 1 (TRPV1) channels have recently been postulated to play a role in the vascular complications/consequences associated with diabetes despite the fact that the mechanisms through which TRPV1 regulates vascular function are not fully known. Accordingly, our goal was to define the mechanisms by which TRPV1 channels modulate vascular function and contribute to vascular dysfunction in diabetes. We subjected mice lacking TRPV1 [TRPV1((-/-))], db/db, and control C57BLKS/J mice to in vivo infusion of the TRPV1 agonist capsaicin or the α-adrenergic agonist phenylephrine (PE) to examine the integrated circulatory actions of TRPV1.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
September 2011
Transient receptor potential vanilloid channel 4 (TRPV4) is a polymodally activated nonselective cationic channel implicated in the regulation of vasodilation and hypertension. We and others have recently shown that cyclic stretch and shear stress activate TRPV4-mediated calcium influx in endothelial cells (EC). In addition to the mechanical forces, acetylcholine (ACh) was shown to activate TRPV4-mediated calcium influx in endothelial cells, which is important for nitric oxide-dependent vasodilation.
View Article and Find Full Text PDFHepatocellular carcinoma (HCC), one of the most lethal cancers, results in more than one million fatalities worldwide every year. In view of the limited therapeutic alternatives and poor prognosis of liver cancer, preventive control approaches, notably chemoprevention, have been considered to be the best strategy in lowering the present prevalence of the disease. Resveratrol, a naturally occurring antioxidant and antiinflammatory agent found in grapes and red wine, inhibits carcinogenesis with a pleiotropic mode of action.
View Article and Find Full Text PDFDiabetic patients are prone to developing myocardial fibrosis and suffer from decreased wound healing capabilities. The purpose of this study was to determine whether diabetes alters cardiac fibroblast activity in the myocardium in a 6-wk streptozotocin-induced type 1 diabetic model. In vivo echocardiography indicated significant dilation of the left ventricle (LV) in the diabetic animals, while cardiac function was comparable to that in the normal group.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
September 2009
The alveolar epithelium plays a critical role in resolving pulmonary edema. We thus hypothesized that its function might be upregulated in rats with heart failure, a condition that severely challenges the lung's ability to maintain fluid balance. Heart failure was induced by left coronary artery ligation.
View Article and Find Full Text PDFJ Mol Cell Cardiol
March 2010
Cardiac remodeling is accelerated during pathological conditions and several anabolic and catabolic regulators work in concert to repair the myocardium and maintain its functionality. The fibroblasts play a major role in this process via collagen deposition as well as supplying the degradative matrix metalloproteinases. During the more acute responses to a myocardial infarction (MI) the heart relies on a more aggressive wound healing sequence that includes the myofibroblasts, specialized secretory cells necessary for infarct scar formation and thus, rescue of the myocardium.
View Article and Find Full Text PDFCardiac fibroblasts and myofibroblasts are responsible for post-MI remodeling which occurs via regulation of extracellular matrix (ECM). Accelerated post-MI remodeling leads to excessive ECM deposition and fibrosis, contributing to impaired contractile function, arrhythmias, and heart failure. We have previously reported that type VI collagen induces myofibroblast differentiation in cultured cardiac fibroblasts, and that type VI collagen and myofibroblast content were both elevated in the myocardium 20 weeks post-MI.
View Article and Find Full Text PDFAngiotensin II (Ang II)-induced proliferation of cardiac fibroblasts is a major contributing factor to the pathogenesis of cardiac fibrosis. Ang II activates extracellular signal-regulated kinase (ERK) 1/2 to induce cardiac fibroblast proliferation, but the signaling pathways leading to ERK 1/2 activation have not been elucidated in these cells. The goal of the current study was to identify the intracellular mediators of Ang II-induced ERK 1/2 activation in adult rat cardiac fibroblasts.
View Article and Find Full Text PDFCardiac remodelling is a key risk factor for the development of heart failure in the chronic phase following myocardial infarction. Our previous studies have shown an anti-remodelling role of ACE2 (angiotensin-converting enzyme 2) in vivo during hypertension and that these protective effects are mediated through increased circulating levels of Ang-(1-7) [angiotensin-(1-7)]. In the present study, we have demonstrated that cardiac myocytes have modest ACE2 activity, whereas cardiac fibroblasts do not exhibit any endogenous activity.
View Article and Find Full Text PDFBackground: We have developed a rat cell model for studying collagen type I production in coronary artery adventitial fibroblasts. Increased deposition of adventitial collagen type I leads to stiffening of the blood vessel, increased blood pressure, arteriosclerosis and coronary heart disease. Although the source and mechanism of collagen deposition is yet unknown, the adventitia appears to play a significant role.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
January 2006
Cardiac fibroblast (CF) proliferation and differentiation into hypersecretory myofibroblasts can lead to excessive extracellular matrix (ECM) production and cardiac fibrosis. In turn, the ECM produced can potentially activate CFs via distinct feedback mechanisms. To assess how specific ECM components influence CF activation, isolated CFs were plated on specific collagen substrates (type I, III, and VI collagens) before functional assays were carried out.
View Article and Find Full Text PDFTransformation of fibroblasts to myofibroblasts, characterized by expression of alpha-smooth muscle actin (alpha-SMA) and production of extracellular matrix (ECM) components, is a key event in connective tissue remodeling. Approaches to inhibit this transformation are needed in tissues, such as the heart, where excessive ECM production by cardiac fibroblasts (CFs) causes fibrosis, myocardial stiffening, and cardiac dysfunction. We tested whether adenylyl cyclase (AC) activation (increased cAMP levels) modulates the transformation of adult rat CF to myofibroblasts, as assessed by immunofluorescent microscopy, immunoblotting, and collagen synthesis.
View Article and Find Full Text PDF