Publications by authors named "Gary Mantalas"

Mutant KRAS regulates transposable element (TE) RNA and interferon-stimulated gene (ISG) expression, but it remains unclear whether diverse mutations in KRAS affect different TE RNAs throughout the genome. We analyzed the transcriptomes of 3D human lung cancer spheroids that harbor KRAS(G12C) mutations to determine the landscape of TE RNAs regulated by mutant KRAS(G12C). We found that KRAS(G12C) signaling is required for the expression of LINE- and LTR-derived TE RNAs that are distinct from TE RNAs previously shown to be regulated by mutant KRAS(G12D) or KRAS(G12V).

View Article and Find Full Text PDF
Article Synopsis
  • Organ-on-a-chip systems marry microfluidics and cell biology to create 3D organ-like models that mimic real organs' biology and function.
  • A new multiplex platform has been developed to automate the growth of these organoids in controlled environments, allowing for customizable media flow and long-term culture studies.
  • Innovative PDMS chip fabrication techniques enable complex features, and RNA sequencing analysis indicates that automated cerebral cortex organoid cultures experience less stress compared to traditional cell cultures.
View Article and Find Full Text PDF

Simultaneous longitudinal imaging across multiple conditions and replicates has been crucial for scientific studies aiming to understand biological processes and disease. Yet, imaging systems capable of accomplishing these tasks are economically unattainable for most academic and teaching laboratories around the world. Here, we propose the Picroscope, which is the first low-cost system for simultaneous longitudinal biological imaging made primarily using off-the-shelf and 3D-printed materials.

View Article and Find Full Text PDF

This work presents the workflow for generating single cell transcriptomes derived from primary human uterine and cervical tissue obtained during planned cesarean hysterectomies. In total, a catalogue of 310 single cell transcriptomes are obtained, cell types present in these biopsies are inferred, and specific genes defining each of the cellular types present in the tissue are identified. Further validation of the inferred cell identity is also demonstrated via meta-analysis of independent repositories in literature generated by bulk sequenced data of fluorescence-activated cell sorting sorted cells.

View Article and Find Full Text PDF
Article Synopsis
  • Haematopoiesis, the process of blood cell formation, relies on haematopoietic stem cells (HSCs) that can renew themselves and produce various blood and immune cells throughout an organism's life.
  • The study focuses on Botryllus schlosseri, a colonial tunicate, to explore its unique stem cell characteristics and immune system, revealing how compatible colonies can share circulation while incompatible ones reject each other.
  • Findings suggest that HSCs and immune cells in tunicates and vertebrates share a common evolutionary ancestor, indicating that the niches for these cells may have also evolved from a similar origin.
View Article and Find Full Text PDF

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have become a powerful tool for human disease modeling and therapeutic testing. However, their use remains limited by their immaturity and heterogeneity. To characterize the source of this heterogeneity, we applied complementary single-cell RNA-seq and bulk RNA-seq technologies over time during hiPSC cardiac differentiation and in the adult heart.

View Article and Find Full Text PDF

Genetic changes causing brain size expansion in human evolution have remained elusive. Notch signaling is essential for radial glia stem cell proliferation and is a determinant of neuronal number in the mammalian cortex. We find that three paralogs of human-specific NOTCH2NL are highly expressed in radial glia.

View Article and Find Full Text PDF

Single-cell characterization techniques, such as mRNA-seq, have been applied to a diverse range of applications in cancer biology, yielding great insight into mechanisms leading to therapy resistance and tumor clonality. While single-cell techniques can yield a wealth of information, a common bottleneck is the lack of throughput, with many current processing methods being limited to the analysis of small volumes of single cell suspensions with cell densities on the order of 107 per mL. In this work, we present a high-throughput full-length mRNA-seq protocol incorporating a magnetic sifter and magnetic nanoparticle-antibody conjugates for rare cell enrichment, and Smart-seq2 chemistry for sequencing.

View Article and Find Full Text PDF

The mammalian lung is a highly branched network in which the distal regions of the bronchial tree transform during development into a densely packed honeycomb of alveolar air sacs that mediate gas exchange. Although this transformation has been studied by marker expression analysis and fate-mapping, the mechanisms that control the progression of lung progenitors along distinct lineages into mature alveolar cell types are still incompletely known, in part because of the limited number of lineage markers and the effects of ensemble averaging in conventional transcriptome analysis experiments on cell populations. Here we show that single-cell transcriptome analysis circumvents these problems and enables direct measurement of the various cell types and hierarchies in the developing lung.

View Article and Find Full Text PDF

Interest in single-cell whole-transcriptome analysis is growing rapidly, especially for profiling rare or heterogeneous populations of cells. We compared commercially available single-cell RNA amplification methods with both microliter and nanoliter volumes, using sequence from bulk total RNA and multiplexed quantitative PCR as benchmarks to systematically evaluate the sensitivity and accuracy of various single-cell RNA-seq approaches. We show that single-cell RNA-seq can be used to perform accurate quantitative transcriptome measurement in individual cells with a relatively small number of sequencing reads and that sequencing large numbers of single cells can recapitulate bulk transcriptome complexity.

View Article and Find Full Text PDF

Histocompatibility is the basis by which multicellular organisms of the same species distinguish self from nonself. Relatively little is known about the mechanisms underlying histocompatibility reactions in lower organisms. Botryllus schlosseri is a colonial urochordate, a sister group of vertebrates, that exhibits a genetically determined natural transplantation reaction, whereby self-recognition between colonies leads to formation of parabionts with a common vasculature, whereas rejection occurs between incompatible colonies.

View Article and Find Full Text PDF

Botryllus schlosseri is a colonial urochordate that follows the chordate plan of development following sexual reproduction, but invokes a stem cell-mediated budding program during subsequent rounds of asexual reproduction. As urochordates are considered to be the closest living invertebrate relatives of vertebrates, they are ideal subjects for whole genome sequence analyses. Using a novel method for high-throughput sequencing of eukaryotic genomes, we sequenced and assembled 580 Mbp of the B.

View Article and Find Full Text PDF

High throughput sequencing technologies have become essential in studies on genomics, epigenomics, and transcriptomics. Although sequencing information has traditionally been elucidated using a low throughput technique called Sanger sequencing, high throughput sequencing technologies are capable of sequencing multiple DNA molecules in parallel, enabling hundreds of millions of DNA molecules to be sequenced at a time. This advantage allows high throughput sequencing to be used to create large data sets, generating more comprehensive insights into the cellular genomic and transcriptomic signatures of various diseases and developmental stages.

View Article and Find Full Text PDF