Publications by authors named "Gary M Wilson"

A human model of unilateral endurance versus resistance exercise, in conjunction with deep phosphoproteomic analyses, was used to identify exercise mode-specific phosphorylation events. Among the outcomes, a resistance exercise-specific cluster of events was identified, and a multitude of bioinformatic- and literature-based predictions suggested that this was mediated by prolonged activation of a pathway involving MKK3b/6, p38, MK2, and mTORC1. Follow-up studies in humans and mice provide consistent support for the predictions and also revealed that resistance exercise-induced signaling through MKK3b and the induction of protein synthesis are highly correlated events (R = 0.

View Article and Find Full Text PDF
Article Synopsis
  • The research focuses on oncogenes, which are genes that can promote cancer when activated, exploring their mechanisms and potential for developing new therapies.
  • A significant finding was that these oncogenes, such as KRAS and MYC, lead to the downregulation of antiviral proteins that are normally induced by type 1 interferon, resulting in weakened antiviral responses.
  • This study highlights how oncogenes contribute to immune evasion in cancers, particularly in pancreatic cancer and osteosarcoma, and points toward new treatment strategies by targeting this immune suppression.
View Article and Find Full Text PDF

Key Points: A decrease in protein synthesis plays a major role in the loss of muscle mass that occurs in response to immobilization. In mice, immobilization leads to a rapid (within 6 h) and progressive decrease in the rate of protein synthesis and this effect is mediated by a decrease in translational efficiency. Deep proteomic and phosphoproteomic analyses of mouse skeletal muscles revealed that the rapid immobilization-induced decrease in protein synthesis cannot be explained by changes in the abundance or phosphorylation state of proteins that have been implicated in the regulation of translation.

View Article and Find Full Text PDF

Mechanical signals, such as those evoked by maximal-intensity contractions (MICs), can induce an increase in muscle mass. Rapamycin-sensitive signaling events are widely implicated in the regulation of this process; however, recent studies indicate that rapamycin-insensitive signaling events are also involved. Thus, to identify these events, we generate a map of the MIC-regulated and rapamycin-sensitive phosphoproteome.

View Article and Find Full Text PDF

Glycopeptides in peptide or digested protein samples pose a number of analytical and bioinformatics challenges beyond those posed by unmodified peptides or peptides with smaller posttranslational modifications. Exact structural elucidation of glycans is generally beyond the capability of a single mass spectrometry experiment, so a reasonable level of identification for tandem mass spectrometry, taken by several glycopeptide software tools, is that of peptide sequence and glycan composition, meaning the number of monosaccharides of each distinct mass, e.g.

View Article and Find Full Text PDF

The influenza virus polymerase transcribes and replicates the viral genome. The proper timing and balance of polymerase activity is important for successful replication. Genome replication is controlled in part by phosphorylation of NP that regulates assembly of the replication machinery.

View Article and Find Full Text PDF

Protein ensembles control genome function by establishing, maintaining, and deconstructing cell-type-specific chromosomal landscapes. A plethora of small molecules orchestrate cellular functions and therefore may link physiological processes with genome biology. The metabolic enzyme and hemoglobin cofactor heme induces proteolysis of a transcriptional repressor, Bach1, and regulates gene expression post-transcriptionally.

View Article and Find Full Text PDF

Influenza virus exploits cellular factors to complete each step of viral replication. Yet, multiple host proteins actively block replication. Consequently, infection success depends on the relative speed and efficacy at which both the virus and host use their respective effectors.

View Article and Find Full Text PDF

The cell surface proteome, the surfaceome, is the interface for engaging the extracellular space in normal and cancer cells. Here we apply quantitative proteomics of -linked glycoproteins to reveal how a collection of some 700 surface proteins is dramatically remodeled in an isogenic breast epithelial cell line stably expressing any of six of the most prominent proliferative oncogenes, including the receptor tyrosine kinases, EGFR and HER2, and downstream signaling partners such as KRAS, BRAF, MEK, and AKT. We find that each oncogene has somewhat different surfaceomes, but the functions of these proteins are harmonized by common biological themes including up-regulation of nutrient transporters, down-regulation of adhesion molecules and tumor suppressing phosphatases, and alteration in immune modulators.

View Article and Find Full Text PDF

Background: The protozoan pathogen Toxoplasma gondii has the unique ability to develop a chronic infection in the brain of its host by transitioning from the fast growing tachyzoite morphology to latent bradyzoite morphology. A hallmark of the bradyzoite is the development of neuronal cysts that are resilient against host immune response and current therapeutics. The bradyzoite parasites within the cyst have a carbohydrate and protein-rich wall and a slow-replication cycle, allowing them to remain hidden from the host.

View Article and Find Full Text PDF

Mitochondrial proteins are replete with phosphorylation, yet its functional relevance remains largely unclear. The presence of multiple resident mitochondrial phosphatases, however, suggests that protein dephosphorylation may be broadly important for calibrating mitochondrial activities. To explore this, we deleted the poorly characterized matrix phosphatase Pptc7 from mice using CRISPR-Cas9 technology.

View Article and Find Full Text PDF

By functioning as an enzyme cofactor, hemoglobin component, and gene regulator, heme is vital for life. One mode of heme-regulated transcription involves amplifying the activity of GATA-1, a key determinant of erythrocyte differentiation. To discover biological consequences of the metal cofactor-transcription factor mechanism, we merged GATA-1/heme-regulated sectors of the proteome and transcriptome.

View Article and Find Full Text PDF

We propose that phosphoproteomic-based studies will radically advance our knowledge about exercise-regulated signaling events. However, these studies use cutting-edge technologies that can be difficult for nonspecialists to understand. Hence, this review is intended to help nonspecialists 1) understand the fundamental technologies behind phosphoproteomic analysis and 2) use various bioinformatic tools that can be used to interrogate phosphoproteomic datasets.

View Article and Find Full Text PDF
Article Synopsis
  • Coenzyme Q (CoQ) is crucial for mitochondrial energy production, but how its production is linked to protein complex formation is not well understood.
  • Puf3p, a RNA-binding protein, plays a key role in regulating CoQ biosynthesis by controlling the levels of the enzyme Coq5p, preventing its excess accumulation, which is important for optimal CoQ production.
  • The research highlights how Puf3p also influences other mitochondrial processes, suggesting a coordinated mechanism for managing both CoQ synthesis and the assembly of essential mitochondrial proteins.
View Article and Find Full Text PDF

The formation of unusual seven-membered, sterically overloaded chelates [Pt(en)(L/L´)](NO(3))(2) (4a/4b) from the corresponding potent hybrid antitumor agents [PtCl(en)(LH/L´H)](NO(3))(2) (3a/3b) is described, where en is ethane-1,2-diamine and L(H) and L´(H) are (protonated) N-(2-(acridin-9-ylamino)ethyl)-N-methylpropionimidamide and N-(2-(acridin-9-ylamino)ethyl)-N-methylacetimidamide, respectively. Compounds 3a and 3b inhibit H460 lung cancer cell proliferation with IC(50) values of 12 ± 2 nM and 2.8 ± 0.

View Article and Find Full Text PDF

Using immunoprecipitation, mass spectrometry, and western blot analysis we investigated cytosolic protein interactions of the schizophrenia susceptibility gene dysbindin in mammalian cells. We identified novel interactions with members of the exocyst, dynactin and chaperonin containing T-complex protein complexes, and we confirmed interactions reported previously with all members of the biogenesis of lysosome-related organelles complex-1 and the adaptor-related protein complex 3. We report interactions between dysbindin and the exocyst and dynactin complex that confirm a link between two important schizophrenia susceptibility genes: dysbindin and disrupted-in-schizophrenia-1.

View Article and Find Full Text PDF

Two efficient methods to study relationships between particulate matter (PM) concentrations and emission sources are compared in the three-dimensional comprehensive air quality model with extensions (CAMx). Particulate source apportionment technology (PSAT) is a tagged species method that apportions concentrations of PM components to their respective primary precursors, e.g.

View Article and Find Full Text PDF

Using bacterial artificial chromosome (BAC) array comparative genome hybridization (aCGH) at approximately 1.4 Mbp resolution, we screened post-mortem brain DNA from bipolar disorder cases, schizophrenia cases and control individuals (n=35 each) for DNA copy-number aberrations. DNA copy number is a largely unexplored source of human genetic variation that may contribute risk for complex disease.

View Article and Find Full Text PDF

Duplication of chromosomal segments and associated genes is thought to be a primary mechanism for generating evolutionary novelty. By comparative genome hybridization using a full-coverage (tiling) human BAC array with 79-kb resolution, we have identified 63 chromosomal segments, ranging in size from 0.65 to 1.

View Article and Find Full Text PDF

We purified from activated T lymphocytes a novel, highly conserved, 116-kDa, intracellular protein that occurred at high levels in the large, dividing cells of the thymus, was up-regulated when resting T or B lymphocytes or hemopoietic progenitors were activated, and was down-regulated when a monocytic leukemia, M1, was induced to differentiate. Expression of the protein was highest in the thymus and spleen and lowest in tissues with a low proportion of dividing cells such as kidney or muscle, although expression was high in the brain. The protein was localized to the cytosol and was phosphorylated, which is consistent with a previous report that the Xenopus laevis ortholog was phosphorylated by a mitotically activated kinase (1 ).

View Article and Find Full Text PDF

The decoupled direct method (DDM) has been implemented in a three-dimensional (3D) air quality model in order to calculate first-order sensitivities with respect to emissions and initial and boundary concentrations. This required deriving new equations for the sensitivities from the equations of the hybrid chemistry solver and the nonlinear advection algorithm in the model. The sensitivities for the chemistry and advection steps were tested in box-model and rotating-hill simulations, respectively.

View Article and Find Full Text PDF

The ozone source apportionment technology (OSAT) estimates the contributions of different sources to ozone concentrations using a set of tracers for NOx, total VOCs, and ozone and an indicator that ascribes instantaneous ozone production to NOx or VOCs. These source contributions were compared to first-order sensitivities obtained by the decoupled direct method (DDM) for a three-dimensional simulation of an ozone episode in the Lake Michigan region. The cut-point for the OSAT indicator between VOC- and NOx-sensitive ozone production agrees well with the DDM sensitivities to VOC and NOx.

View Article and Find Full Text PDF