Publications by authors named "Gary Karpen"

The recruitment of Heterochromatin Protein 1 (HP1) partners is essential for heterochromatin assembly and function, yet our knowledge regarding their organization in heterochromatin remains limited. Here we show that interactors engage the Drosophila HP1 (HP1a) dimer through a degenerate and expanded form of the previously identified PxVxL motif, which we now term HP1a Access Codes (HACs). These HACs reside in disordered regions, possess high conservation among Drosophila homologs, and contain alternating hydrophobic residues nested in a cluster of positively charged amino acids.

View Article and Find Full Text PDF

Cells employ diverse strategies to repair double-strand breaks (DSBs), a dangerous form of DNA damage that threatens genome integrity. Eukaryotic nuclei consist of different chromatin environments, each displaying distinct molecular and biophysical properties that can significantly influence the DSB-repair process. DSBs arising in the compact and silenced heterochromatin domains have been found to move to the heterochromatin periphery in mouse and Drosophila to prevent aberrant recombination events.

View Article and Find Full Text PDF

We recently developed directed methylation with long-read sequencing (DiMeLo-seq) to map protein-DNA interactions genome wide. DiMeLo-seq is capable of mapping multiple interaction sites on single DNA molecules, profiling protein binding in the context of endogenous DNA methylation, identifying haplotype-specific protein-DNA interactions and mapping protein-DNA interactions in repetitive regions of the genome that are difficult to study with short-read methods. With DiMeLo-seq, adenines in the vicinity of a protein of interest are methylated in situ by tethering the Hia5 methyltransferase to an antibody using protein A.

View Article and Find Full Text PDF

Nucleoli are surrounded by Pericentromeric Heterochromatin (PCH), reflecting a close spatial association between the two largest biomolecular condensates in eukaryotic nuclei. This nuclear organizational feature is highly conserved and is disrupted in diseased states like senescence, however, the mechanisms driving PCH-nucleolar association are unclear. High-resolution live imaging during early Drosophila development revealed a highly dynamic process in which PCH and nucleolar formation is coordinated and interdependent.

View Article and Find Full Text PDF

Nucleoli are surrounded by Pericentromeric Heterochromatin (PCH), reflecting a close spatial association between the two largest biomolecular condensates in eukaryotic nuclei. Nucleoli are the sites of ribosome synthesis, while the repeat-rich PCH is essential for chromosome segregation, genome stability, and transcriptional silencing. How and why these two distinct condensates co-assemble is unclear.

View Article and Find Full Text PDF

The spatial segregation of pericentromeric heterochromatin (PCH) into distinct, membrane-less nuclear compartments involves the binding of Heterochromatin Protein 1 (HP1) to H3K9me2/3-rich genomic regions. While HP1 exhibits liquid-liquid phase separation properties in vitro, its mechanistic impact on the structure and dynamics of PCH condensate formation in vivo remains largely unresolved. Here, using a minimal theoretical framework, we systematically investigate the mutual coupling between self-interacting HP1-like molecules and the chromatin polymer.

View Article and Find Full Text PDF

Exposure to ionizing radiation is considered by NASA to be a major health hazard for deep space exploration missions. Ionizing radiation sensitivity is modulated by both genomic and environmental factors. Understanding their contributions is crucial for designing experiments in model organisms, evaluating the risk of deep space (i.

View Article and Find Full Text PDF

Existing human genome assemblies have almost entirely excluded repetitive sequences within and near centromeres, limiting our understanding of their organization, evolution, and functions, which include facilitating proper chromosome segregation. Now, a complete, telomere-to-telomere human genome assembly (T2T-CHM13) has enabled us to comprehensively characterize pericentromeric and centromeric repeats, which constitute 6.2% of the genome (189.

View Article and Find Full Text PDF

Contrary to dogma, evolutionarily young and dynamic genes can encode essential functions. We find that evolutionarily dynamic genes, which encode the most abundant class of insect transcription factors, are more likely to encode essential functions in than ancient, conserved genes. We focus on the gene, which is evolutionarily young, poorly retained in species, and evolves under strong positive selection.

View Article and Find Full Text PDF

Membraneless pericentromeric heterochromatin (PCH) domains play vital roles in chromosome dynamics and genome stability. However, our current understanding of 3D genome organization does not include PCH domains because of technical challenges associated with repetitive sequences enriched in PCH genomic regions. We investigated the 3D architecture of Drosophila melanogaster PCH domains and their spatial associations with the euchromatic genome by developing a novel analysis method that incorporates genome-wide Hi-C reads originating from PCH DNA.

View Article and Find Full Text PDF

Tandemly-repeated DNAs, or satellites, are enriched in heterochromatic regions of eukaryotic genomes and contribute to nuclear structure and function. Some satellites are transcribed, but we lack direct evidence that specific satellite RNAs are required for normal organismal functions. Here, we show satellite RNAs derived from AAGAG tandem repeats are transcribed in many cells throughout development, enriched in neurons and testes, often localized within heterochromatic regions, and important for viability.

View Article and Find Full Text PDF

Despite critical roles in chromosome segregation and disease, the repetitive structure and vast size of centromeres and their surrounding heterochromatic regions impede studies of genomic variation. Here we report the identification of large-scale haplotypes () in humans that span the centromere-proximal regions of all metacentric chromosomes, including the arrays of highly repeated α-satellites on which centromeres form. reveal deep diversity, including entire introgressed Neanderthal centromeres and equally ancient lineages among Africans.

View Article and Find Full Text PDF

Repair of DNA double-strand breaks (DSBs) must be orchestrated properly within diverse chromatin domains in order to maintain genetic stability. Euchromatin and heterochromatin domains display major differences in histone modifications, biophysical properties, and spatiotemporal dynamics of DSB repair. However, it is unclear whether differential histone-modifying activities are required for DSB repair in these distinct domains.

View Article and Find Full Text PDF

Constitutive heterochromatin is a major component of the eukaryotic nucleus and is essential for the maintenance of genome stability. Highly concentrated at pericentromeric and telomeric domains, heterochromatin is riddled with repetitive sequences and has evolved specific ways to compartmentalize, silence, and repair repeats. The delicate balance between heterochromatin epigenetic maintenance and cellular processes such as mitosis and DNA repair and replication reveals a highly dynamic and plastic chromatin domain that can be perturbed by multiple mechanisms, with far-reaching consequences for genome integrity.

View Article and Find Full Text PDF

Chromosome instability (CIN) contributes to the development of many cancer. In this paper, we summarize our recent finding that a novel pathway by which FBW7 loss promotes Centromere Protein A (CENP-A) phosphorylation on Serine 18 through Cyclin E1/CDK2, therefore promoting CIN and tumorigenesis. Our finding demonstrates the importance of CENP-A post-translational modification on modulating centromere and mitotic functions in cancer.

View Article and Find Full Text PDF

The centromere regulates proper chromosome segregation, and its dysfunction is implicated in chromosomal instability (CIN). However, relatively little is known about how centromere dysfunction occurs in cancer. Here, we define the consequences of phosphorylation by cyclin E1/CDK2 on a conserved Ser18 residue of centromere-associated protein CENP-A, an essential histone H3 variant that specifies centromere identity.

View Article and Find Full Text PDF

Eukaryotic genomes are broadly divided between gene-rich euchromatin and the highly repetitive heterochromatin domain, which is enriched for proteins critical for genome stability and transcriptional silencing. This study shows that Drosophila KDM4A (dKDM4A), previously characterized as a euchromatic histone H3 K36 demethylase and transcriptional regulator, predominantly localizes to heterochromatin and regulates heterochromatin position-effect variegation (PEV), organization of repetitive DNAs, and DNA repair. We demonstrate that dKDM4A demethylase activity is dispensable for PEV.

View Article and Find Full Text PDF

Transposable elements (TEs) are widespread genomic parasites, and their evolution has remained a critical question in evolutionary genomics. Here, we study the relatively unexplored impacts of TEs and provide the first genome-wide quantification of such effects in and . Surprisingly, the spread of repressive epigenetic marks (histone H3K9me2) to nearby DNA occurs at >50% of euchromatic TEs, and can extend up to 20 kb.

View Article and Find Full Text PDF

Constitutive heterochromatin is an important component of eukaryotic genomes that has essential roles in nuclear architecture, DNA repair and genome stability, and silencing of transposon and gene expression. Heterochromatin is highly enriched for repetitive sequences, and is defined epigenetically by methylation of histone H3 at lysine 9 and recruitment of its binding partner heterochromatin protein 1 (HP1). A prevalent view of heterochromatic silencing is that these and associated factors lead to chromatin compaction, resulting in steric exclusion of regulatory proteins such as RNA polymerase from the underlying DNA.

View Article and Find Full Text PDF

Although the gut microbiome plays important roles in host physiology, health and disease, we lack understanding of the complex interplay between host genetics and early life environment on the microbial and metabolic composition of the gut. We used the genetically diverse Collaborative Cross mouse system to discover that early life history impacts the microbiome composition, whereas dietary changes have only a moderate effect. By contrast, the gut metabolome was shaped mostly by diet, with specific non-dietary metabolites explained by microbial metabolism.

View Article and Find Full Text PDF

Chromosomal instability (CIN) is a hallmark of cancer that contributes to tumour heterogeneity and other malignant properties. Aberrant centromere and kinetochore function causes CIN through chromosome missegregation, leading to aneuploidy, rearrangements and micronucleus formation. Here we develop a Centromere and kinetochore gene Expression Score (CES) signature that quantifies the centromere and kinetochore gene misexpression in cancers.

View Article and Find Full Text PDF

Heterochromatin is enriched for specific epigenetic factors including Heterochromatin Protein 1a (HP1a), and is essential for many organismal functions. To elucidate heterochromatin organization and regulation, we purified Drosophila melanogaster HP1a interactors, and performed a genome-wide RNAi screen to identify genes that impact HP1a levels or localization. The majority of the over four hundred putative HP1a interactors and regulators identified were previously unknown.

View Article and Find Full Text PDF

Repair of DNA double-strand breaks (DSBs) must be properly orchestrated in diverse chromatin regions to maintain genome stability. The choice between two main DSB repair pathways, nonhomologous end-joining (NHEJ) and homologous recombination (HR), is regulated by the cell cycle as well as chromatin context.Pericentromeric heterochromatin forms a distinct nuclear domain that is enriched for repetitive DNA sequences that pose significant challenges for genome stability.

View Article and Find Full Text PDF

Evidence has emerged that suggests a link between motor deficits, obesity and many neurological disorders. However, the contributing genetic risk factors are poorly understood. Here we used the Collaborative Cross (CC), a large panel of newly inbred mice that captures 90% of the known variation among laboratory mice, to identify the genetic loci controlling rotarod performance and its relationship with body weight in a cohort of 365 mice across 16 CC strains.

View Article and Find Full Text PDF

Heterochromatin mostly comprises repeated sequences prone to harmful ectopic recombination during double-strand break (DSB) repair. In Drosophila cells, 'safe' homologous recombination (HR) repair of heterochromatic breaks relies on a specialized pathway that relocalizes damaged sequences away from the heterochromatin domain before strand invasion. Here we show that heterochromatic DSBs move to the nuclear periphery to continue HR repair.

View Article and Find Full Text PDF